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The K N → K� reaction in coupled-channels chiral models up to next-to-leading order

A. Feijoo,* V. K. Magas, and A. Ramos
Departament d’Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos, Universitat de Barcelona,

Martı́ Franquès 1, E08028 Barcelona, Spain
(Received 23 February 2015; revised manuscript received 25 May 2015; published 13 July 2015)

The meson-baryon interaction in s wave in the strangeness S = −1 sector has been studied, employing a chiral
SU(3) Lagrangian up to next-to-leading order (NLO) and implementing unitarization in coupled channels. The
parameters of the Lagrangian have been fitted to a large set of experimental data in different two-body channels,
paying special attention to the K̄N → K� reaction, which is particularly sensitive to the NLO terms. With the
aim of improving the model in the K� production channels, effects of the high spin hyperon resonances �(2030)
and �(2250) have been taken into account phenomenologically.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is a gauge theory which
describes the strong interaction between the color charged
particles, quarks, and gluons. It is strongly coupled at low
energies and it cannot be applied perturbatively to describe
the interaction of hadrons in this regime. One may then resort
to effective theories, such as SU(3) chiral perturbation theory
(χPT), which is built in terms of an effective Lagrangian with
hadrons as the new degrees of freedom. This effective theory
respects the symmetries of QCD, in particular chiral symmetry
SU(3)R × SU(3)L and, more specifically, spontaneous chiral
symmetry breaking that causes the appearance of the Nambu-
Goldstone (NG) bosons as light pseudoscalar mesons and
the dynamical mass generation of hadrons [1–5]. While
χPT describes very satisfactorily hadron interactions at low
energies, it fails in the vicinity of resonances, which are poles
of the scattering amplitude, making the use of nonperturbative
schemes mandatory.

Unitarized chiral perturbation theory (UχPT), which com-
bines chiral dynamics with unitarization techniques in coupled
channels, has been shown to be a very powerful tool that
permits extending the validity of χPT to higher energies and
to describe the physics around certain resonances, the so-called
dynamically generated resonances (see [6] and references
therein). A clear example of the success of UχPT is the
description of the �(1405) resonance, located only 27 MeV
below the K̄N threshold, that emerges from coupled-channel
meson-baryon rescattering in the S = −1 sector. In fact,
the dynamical origin of the �(1405) resonance was already
hindered more than 50 years ago [7], an idea that was
reformulated later in terms of the chiral unitary theory in
coupled channels [8]. This success stimulated a lot of activity
in the community, which analyzed the effects of including
a complete basis of meson-baryon channels, differences in
the regularization of the equations, s- and u-channel Born
terms in the Lagrangian, next-to-leading (NLO) contributions,
etc. [9–17]. The various developed models could reproduce
the K̄N scattering data very satisfactorily and all these efforts
culminated in establishing the �(1405) as a superposition of
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two poles of the scattering amplitude [11,14,18], generated
dynamically from the unitarized meson-baryon interaction in
coupled channels.

This topic experienced a renewed interest in the last few
years, after the availability of a more precise measurement of
the energy shift and width of the 1s state in kaonic hydrogen
by the SIDDHARTA Collaboration [19] at DA�NE. The
CLAS Collaboration at JLAB has also recently provided
mass distributions of �+π−, �−π+, and �0π0 states in
the region of the �(1405) [20], as well as differential cross
sections [21] and a direct determination of the expected spin
parity Jπ = 1/2− of the �(1405) [22]. Invariant π� mass
distributions from pp scattering experiments have recently
been measured by the COSY Collaboration at Jülich [23] and
by the HADES Collaboration at GSI [24]. In parallel with the
increased experimental activity, the theoretical models have
been revisited [25–30] and analyses of the new reactions,
aiming at pinning down the properties of the �(1405) better,
have been performed [31–33].

In this paper, we present a study of the S = −1 meson-
baryon interaction which aims at providing well constrained
values of the low-energy constants of the NLO chiral La-
grangian. We will employ data in the strong sector, including
elastic and inelastic cross section data (K−p → K−p, K̄0n,
π±�∓, π0�0, π0�) and the precise SIDDHARTA value of
the energy shift and width of kaonic hydrogen, as done by
the recent works, but, in addition, we will also constrain the
parameters of our model to reproduce the K� production data
via the reactions K−p → K+�−,K0�0. The motivation lies
in the fact that, as we will see, the lowest-order Lagrangian
does not contribute directly to these reactions, which then
become especially sensitive to the NLO terms. In the first part
of this paper, we will present results that support the idea that
the K� cross sections are crucial ingredients for determining
the values of the low-energy constants of the NLO Lagrangian.

We will also show that certain structures present in the
K−p → K+�−,K0�0 cross sections cannot be accounted
for by the unitary coupled-channels model at NLO. The
contribution of explicit resonant terms is an unavoidable fact at
CM energies of around 2 GeV characteristic of K� production.
In fact, several resonance-based models have investigated the
photoproduction of � particles off the proton [34,35] or via
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the strong reactions K−p → K+�−,K0�0 investigated here
[36–39]. These works have found a non-negligible contribu-
tion from high-spin hyperon resonances. Guided by these
findings, in a second part of this paper we implement
phenomenological resonant contributions from high spin res-
onances, specifically �(2030) and �(2250), which were those
found to contribute more strongly in the study of Ref. [36].
This is a necessary exercise to establish how much strength in
the K−p → K+�−,K0�0 reactions can already be described
by resonant terms and how much background, accounted here
by the terms of the NLO Lagrangian, is then needed for a good
reproduction of data. We will see that, even with resonances
explicitly included, the NLO Lagrangian is an important and
necessary ingredient of the model.

This work is organized in two parts. Section II is devoted
to the contributions of the chiral Lagrangian. After presenting
briefly the formalism of unitarization in coupled channels,
the procedure adopted for determining the parameters of the
model is described, followed by a discussion of the results
obtained with the various orders of the chiral Lagrangian. In
a similar way, Sec. III starts with a description of the formal
technicalities involved in the inclusion of the resonances, after
which their ability in reproducing the � strong production
data and their effect on the background terms implemented
by the chiral Lagrangian are discussed. A summary and some
concluding remarks are given in Sec. IV.

II. CHIRAL UNITARY APPROACH

A. Formalism

In this section we present in detail the coupled-channel
formalism employed for describing meson-baryon scattering.
The starting point is the SU(3) chiral effective Lagrangian,

L = Lφ + LφB, (1)

which incorporates the same symmetries and chiral sponta-
neous symmetry breaking patterns as QCD, and describes the
coupling of the pseudoscalar octet (π,K,η) to the fundamental
baryon octet (N,�,�,�). The first term takes into account
pure mesonic processes, while the LφB term, of interest for
this work, implements the interactions between mesons and
baryons. At lowest order, it reads

L(1)
φB = i〈B̄γμ[Dμ,B]〉 − M0〈B̄B〉 − 1

2D〈B̄γμγ5{uμ,B}〉
− 1

2F 〈B̄γμγ5[uμ,B]〉, (2)

where M0 is the common baryon octet mass in the chiral limit,
the constants D, F denote the axial vector couplings of the
baryons to the mesons, and the symbol 〈. . . 〉 stands for the
trace in flavor space.

The pseudoscalar meson octet φ is arranged in a matrix
valued field

U (φ) = u2(φ) = exp

(√
2i

φ

f

)
, (3)

with

φ =

⎛
⎜⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

⎞
⎟⎠, (4)

and f being the pseudoscalar decay constant in the chiral limit.
The quantity U enters the Lagrangian in the combinations
uμ = iu†∂μUu†.

The octet baryon fields are collected in

B =

⎛
⎜⎝

1√
2
�0 + 1√

6
� �+ p

�− − 1√
2
�0 + 1√

6
� n

�− �0 − 2√
6
�

⎞
⎟⎠ , (5)

and, finally, [Dμ,B] stands for the covariant derivative

[Dμ,B] = ∂μB + [�μ,B], (6)

where the chiral connection �μ is given by

�μ = 1
2 [u†,∂μu]. (7)

From the Lagrangian L(1)
φB , one can derive the meson-baryon

interaction kernel at lowest order, or the Weinberg-Tomozawa
(WT) term, which reads

V WT

ij = −Cij

1

4f 2
ūs ′

Bj
(pj )γ μus

Bi
(pi)

(
kiμ + kjμ

)
, (8)

and depends only on one parameter, the pion decay constant f .
The indices (i,j ) cover all the initial and final channels, which,
in the case of strangeness S = −1 and charge Q = 0 explored
here, amount to ten: K−p, K̄0n, π0�, π0�0, π−�+, π+�−,
η�, η�0, K+�−, and K0�0. The matrix of coefficients Cij is
shown in Appendix; see Table VII. The four-momenta kiμ

and kjμ are those of the incoming and outgoing mesons,
respectively, while us

Bi
(pi) denotes the incoming baryon spinor

with spin s and momentum pi , and analogously for the spinor
ūs ′

Bj
(pj ) of the outgoing baryon. The pion decay constant

is well known experimentally, fexp = 93.4 MeV, however in
LO UχPT calculations this parameter is usually taken to be
f = 1.15 − 1.2fexp, in order to partly simulate the effect of
the higher order corrections. We will leave it as a parameter of
our fits.

At next-to-leading order, the contributions ofLφB to meson-
baryon scattering are

L(2)
φB = bD〈B̄{χ+,B}〉 + bF 〈B̄[χ+,B]〉 + b0〈B̄B〉〈χ+〉

+ d1〈B̄{uμ,[uμ,B]}〉 + d2〈B̄[uμ,[uμ,B]]〉
+ d3〈B̄uμ〉〈uμB〉 + d4〈B̄B〉〈uμuμ〉, (9)

where χ+ = 2B0(u†Mu† + uMu) breaks chiral symmetry
explicitly via the quark mass matrix M = diag(mu,md,ms)
and B0 = −〈0|q̄q|0〉/f 2 relates to the order parameter of
spontaneously broken chiral symmetry. The coefficients bD ,
bF , b0, and di (i = 1, . . . ,4) are the low energy constants.
In principle, the first three coefficients, involved in terms
proportional to the χ+ field, should fulfill constraints related
to the mass splitting of baryons. However, since our study
goes beyond tree level and incorporates higher order terms
via coupled-channel scattering equations, we will relax those
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constraints and will fit these b-type constants, together with
the di ones, to the experimental data.

From the Lagrangian L(2)
φB one can derive the meson-baryon

interaction kernel at NLO:

V NLO

ij = 1

f 2
ūs ′

Bj
(pj )

[
Dij − 2

(
kiμkjμ

)
Lij

]
us

Bi
(pi). (10)

The interaction kernel up to NLO is taken in the nonrelativistic
limit and reads

Vij = V WT

ij + V NLO

ij

= −Cij (2
√

s − Mi − Mj )

4f 2
NiNj

+ Dij − 2(kμk′ μ)Lij

f 2
NiNj , (11)

where

Ni =
√

Mi + Ei

2Mi

, Nj =
√

Mj + Ej

2Mj

,

and Mi,Mj and Ei,Ej are the masses and energies, respec-
tively, of the baryons involved in the transition. The Dij and
Lij coefficients depend on the new parameters b0, bD , bF , d1,
d2, d3, and d4 and are given in Appendix; see Table VIII.
As mentioned in the Introduction, the interaction kernel cannot
be employed perturbatively to describe the scattering of K̄N
states, since they couple strongly to many other channel
states and generate the �(1405) resonance close to their
threshold. Due to this reason, a nonperturbative resummation
is needed. The UχPT method consists of solving the Bethe-
Salpether equation in coupled channels, using the interaction
kernel derived from the chiral Lagrangian. The corresponding
equation for the scattering amplitude Tij is schematically
displayed in Fig. 1 and corresponds to the infinite sum

Tij = Vij + VilGlVlj + VilGlVlkGkVkj + . . . , (12)

where the subscripts i,j,l, . . . run over all possible channels
and the loop function Gi stands for the propagator of the
meson-baryon state of channel i. The former equation can
also be cast as

Tij = Vij + VilGlTlj . (13)

This is an integral equation for the amplitude Tij which, in the
CM frame, involves an integral over the four-momentum of the
intermediate meson-baryon system, which can take off-shell
values. However, it has been shown [9,26,40] that the off-
shell parts of the interaction kernel give rise to tadpole-type

...

FIG. 1. Diagrammatic solution of the Bethe-Salpeter equation,
where the interaction kernel V is represented by the empty blobs, the
scattering matrix T by the solid blobs, and the loop function G is
represented by the intermediate baryon-meson propagators.

diagrams, which can be reabsorbed into renormalization of
couplings and masses and could hence be omitted from the
calculation. This procedure permits factorizing Vil and Tlj out
of the integral equation, leaving a simple system of algebraic
equations to be solved, which, in matrix form reads

T = (1 − V G)−1V, (14)

where the loop function G stands for a diagonal matrix with
elements

Gl = i
∫

d4ql

(2π )4

2Ml

(P − ql)2 − M2
l + iε

1

q2
l − m2

l + iε
, (15)

where Ml and ml are the baryon and meson masses of the “l”
channel. The loop function diverges logarithmically and needs
to be regularized. We apply dimensional regularization, which
gives

Gl = 2Ml

(4π )2

{
al + ln

M2
l

μ2
+ m2

l − M2
l + s

2s
ln

m2
l

M2
l

+ qcm√
s

ln

[
(s + 2

√
sqcm)2 − (

M2
l − m2

l

)2

(s − 2
√

sqcm)2 − (
M2

l − m2
l

)2

]}
, (16)

where μ is the dimensional regularization scale (we take μ = 1
GeV), and al are the so called subtraction constants. They
will be used as free parameters and fitted to the experimental
data. Taking into account isospin symmetry, there are only
six independent subtraction constants in the S = −1 meson-
baryon scattering problem studied here.
We note that, at lowest order in the chiral expansion, there
is also the contribution of the s- and u-channel diagrams
involving the coupling of the meson-baryon channel to an
intermediate baryon state. The contribution of these terms is
very moderate [11] and, although they have been shown to help
in producing more physical values of the subtracting constants
in some cases [17,25], they do not influence significantly the
quality of the fits. We have neglected these terms in the present
study.
Once the T matrix is known, we can obtain the unpolarized
differential and total cross section for the i → j reaction:

σij = 1

4π

MiMj

s

kj

ki

Sij , (17)

where s is the square of the center-of-mass (CM) energy, and
we have averaged over the initial baryon spin projections and
resummed over the final baryon spin projections:

Sij = 1

2

∑
s ′,s

|Tij (s ′,s)|2. (18)

The K−p scattering length is obtained from the K−p
scattering amplitude at threshold as

aK−p = − 1

4π

Mp√
Mp + MK̄

TK−p→K−p, (19)

where we have used the following notation:

Tij = 1

2

∑
s ′,s

Tij (s ′,s). (20)
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TABLE I. Number of experimental points used
in our fits, distributed per observable.

Observable Points

σK−p→K−p 23
σK−p→K̄0n 9
σK−p→π0� 3
σK−p→π0�0 3
σK−p→π−�+ 20
σK−p→π+�− 28
σK−p→K+�− 46
σK−p→K0�0 29
γ 1
Rn 1
Rc 1
�E1s 1
�1s 1

The scattering length is related to the energy shift and width of
the 1s state of kaonic hydrogen via the second order corrected
Deser-type formula [41],

�E − i
�

2
= −2α3μ2

r aK−p[1 + 2aK−p α μr (1 − ln α)], (21)

where α is the fine-structure constant and μr is the reduced
mass of the K−p system.
From the elastic and inelastic K−p cross sections evaluated
at threshold, one can also obtain the following measured
branching ratios of cross section yields:

γ = �(K−p → π+�−)

�(K−p → π−�+)
, (22)

Rn = �(K−p → π0�)

�(K−p → neutral states)
, (23)

Rc = �(K−p → π+�−,π−�+)

�(K−p → inelastic channels)
. (24)

B. Data treatment and fits

We consider a large amount of cross section data for K−p
scattering and related channels [42–52]. Some points of these
data sets have inconsistencies with the trend of the neighboring
points and have not been employed in the fitting procedure,
leaving us with a total of 161 experimental points coming from
K−p scattering. The points eliminated will be displayed in red
in the figures. We also fit the parameters of our model to the
measured branching ratios [53,54],

γ = 2.36 ± 0.04,

Rn = 0.664 ± 0.011,

Rc = 0.189 ± 0.015,

and to the recent energy shift and width of the 1s state of
kaonic hydrogen obtained by the SIDDHARTA Collabora-
tion [19], namely �E1s = 283 ± 36 and �1s = 541 ± 92. The
distribution of points per observable is summarized in Table I.

The standard fitting procedure consists of minimizing
χ2

d.o.f., defined as

χ2
d.o.f. = 1∑K

k=1 nk − p

K,nk∑
k=1,i=1

(
y th

i,k − y
exp
i,k

)2

σ 2
i,k

, (25)

where y
exp
i,k , y th

i,k , and σi,k represent, respectively, the experi-
mental value, theoretical prediction, and error of the ith point
of the kth observable, which has a total of nk points, K is the
total number of observables, and p denotes the number of free
fitting parameters. This previous definition could suppress the
relevance in the fit of observables which have a small number of
associated experimental points, in favor of those with a larger
set. To circumvent this problem, we adopt the method already
exploited in [25,27], which uses a normalized χ2 that assigns
equal weight to the different measurements. This is achieved
by averaging over the different experiments the corresponding
χ2 per degree of freedom, which is obtained by dividing the
contribution of the experiment, χ2

k , by its own number of
experimental points, nk . More explicitly, the redefined χ2 per
degree of freedom, which we will use in this work, is given by
the expression

χ2
d.o.f =

∑K
k=1 nk( ∑K

k=1 nk − p
) 1

K

K∑
k=1

χ2
k

nk

(26)

with

χ2
k =

nk∑
i=1

(
y th

i,k − y
exp
i,k

)2

σ 2
i,k

.

In order to compare with previous works and learn about
the importance of the different terms of the chiral Lagrangian,
we perform, in this part of the work, four different fits. The
first fit corresponds to a unitarized calculation employing
the chiral Lagrangian up to the lowest order WT term. This
involves the fitting of seven parameters: the pion decay
constant f and the six subtraction constants aK̄N , aπ�, aπ� ,
aη�, aη� , and aK�. The second fit improves upon the first
one by using up to the NLO terms of the interaction kernel,
thus involving seven additional parameters: the NLO low
energy constants b0, bD , bF , d1, d2, d3, and d4. Analogously
to previous works, these first and second fits ignore the
experimental data corresponding to the K� channels and their
results will be denoted by WT (no K�) and NLO (no K�),
respectively. From the prediction of the K� cross sections
given by these fits, we will demonstrate clearly the important
role that the NLO terms have on the K−p → K� reactions.
This brings up, naturally, the study of the third and fourth fits,
denoted by WT and NLO, respectively, which correspond to
the same fitting procedures as the first and second ones but
including the K� production cross section data.

C. Results and discussion

In this section, we present the results obtained with the
above mentioned fits, namely using the WT kernel of Eq. (8)
or the NLO one of Eq. (11), and considering or not the
experimental data of the K� channels.
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TABLE II. Threshold observables obtained from the WT (no K�), NLO (no K�), WT, and NLO fits explained in the text. Experimental
data are taken from [19,53,54].

γ Rn Rc ap(K−p → K−p) �E1s �1s

WT (no K�) 2.37 0.191 0.665 −0.76 + i 0.79 316 511
NLO (no K�) 2.36 0.188 0.662 −0.67 + i 0.84 290 559
WT 2.36 0.192 0.667 −0.76 + i 0.84 318 543
NLO 2.36 0.189 0.664 −0.73 + i 0.85 310 557

Expt. 2.36 0.189 0.664 −0.66 + i 0.81 283 541
±0.04 ±0.015 ±0.011 (±0.07) + i (±0.15) ±36 ±92

We start by showing the results obtained for the threshold
observables, collected in Table II. It is clear that all the fits
are able to reproduce, with a similar degree of accuracy, the
branching ratios, the K−p scattering length, and the related
energy shift and width of the 1s state of kaonic hydrogen,
which is also shown in the table for completeness. Actually,
only the first and third fits, obtained with the lowest order WT
kernel, seem to produce a worse value of the real part of aK−p,
close to the limit of its error band.

Similarly, the four fitting schemes reproduce satisfactorily
the total cross sections for the reactions K−p → K−p, K̄0n,
π−�+, π+�−, π0�0, π0� shown in Fig. 2. However,
substantial differences appear in the description of the K0�0,
K+�− production channels, displayed in Fig. 3. The results of
the WT (no K�) fit, represented by dotted lines, cannot even
reproduce the size of the cross section in either reaction. The
predicted cross sections amount to less than 0.015 mb, i.e., one
order of magnitude smaller than the measured ones. This is not
a surprising result, because there is no direct contribution from
the reactions K−p → K0�0, K+�− at lowest order, since the
coefficient Cij in Eq. (8) is 0 in both cases (see Table VII
in Appendix). Consequently, the only contribution to the
scattering amplitude of these channels comes from the effect
of the rescattering terms generated by the coupled-channels’
unitarization, which is not sufficient to reproduce the strength
of these cross sections. This fact leads us to believe that
these reactions are very sensitive to the NLO corrections,
due to the nonzero value of the LK−p→K� coefficients of the
potential of Eq. (10) (see Table VIII in Appendix). This is
confirmed already by the NLO (no K�) results represented
by dashed lines in Fig. 3. Even if the experimental data for
the K−p → K0�0,K+�− reactions have not been employed
in this fit, the NLO (no K�) result gives a larger amount of
strength for this channel, especially in the case of the K+�−
production reaction, where the prediction even overshoots the
data considerably.

The obvious next step is to include the K� data in the
fitting procedure and, naturally, the NLO results, represented
by the solid line, reproduce quite satisfactorily the K−p →
K0�0, K+�− cross sections. For completeness, we have
also attempted to reproduce these reactions employing only
the lowest order Lagrangian. The corresponding WT results,
represented by the dot-dashed lines, improve considerably
over those of the WT (no K�) fit, but the fact that the
lowest order Lagrangian can only affect these channels through
unitarization gives rise to quite unphysical values for the fitted
subtraction constants, as commented on below.

Table III displays the values of the parameters of the four
fits discussed in this section, together with the obtained value
of χ2

d.o.f.. Note first that the larger value of χ2
d.o.f. in the

NLO fit with respect to that of the NLO (no K�) one is
precisely due to the contribution of the set of K� data, with
more disperse experimental points, rather than to a loss of
accuracy in reproducing the measurements. We observe that
the inclusion of the NLO terms in the Lagrangian helps quite
significatively in reducing the value of χ2

d.o.f. with respect to
that obtained with the corresponding WT fit at lowest order,
especially when the K� data have been included. All the
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FIG. 2. (Color online) Total cross sections for the K−p →
K−p, K̄

0
n, π−�+, π+�−, π 0�0, π 0� reactions obtained from the

WT (no K�) fit (dotted line), the NLO (no K�) fit (dashed line), the
WT fit (dot-dashed line), and the NLO fit (solid line), where the last
two cases take into account the experimental data of the K� channels;
see text for more details. Experimental data are from [42–45]. The
points in red have not been included in the fitting procedure.
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FIG. 3. (Color online) The total cross sections of the K−p →
K0�0,K+�− reactions obtained from the WT (no K�) fit (dotted
line), the NLO (no K�) fit (dashed line), the WT fit (dot-dashed line),
and the NLO fit (solid line). Experimental data are from [46–52].

fits produce a quite stable value of f , lying very close to
1.2fπ . We observe that the WT fit, forced to accommodate the
reproduction of the additional K� data set via unitarization
loops, produces subtraction constants in the isospin I = 1
channel, aπ� and aη� , which are one order of magnitude
larger than what qualifies as being of “natural” size [11]. The
parameters obtained in the other fits presented in Table III
are of reasonable size. It is found that, within about 2σ of
their errors, the values of the subtraction constants and the f
parameter obtained in the NLO (no K�) and NLO fits are quite
similar. However, the values of the low energy constants of the
NLO Lagrangian (b0, bD , bF , and di) obtained by the two fits
show stronger differences. This means that these parameters
are really sensitive to the data of the K� production reactions
which should then be used to constrain their values, as done
in the present work. This is clearly reflected, not only in the
results presented in Table II and Fig. 2, where we find a slight
improvement in reproducing the threshold observables and
the K−p → K−p, K̄0n, π−�+, π+�−, π0�0, π0� cross
sections, but also, and more especially, in the total cross
section of the K� channels, which cannot be reproduced if
the NLO terms are omitted. We can therefore conclude that the
K−p → K� cross sections are crucial for constraining more
precisely the low energy constants of the NLO Lagrangian.

Focusing now on the cascade production cross sections of
Fig. 3, we observe that the discrepancies between the NLO
model and the data are larger in the vicinity of 2 GeV and
around 2.2 GeV. In the next section, we discuss an extension
of the model that includes the presence of resonances explicitly
to improve the description of the K� channels.

III. INCLUSION OF HIGH SPIN HYPERON RESONANCES
IN THE K̄ N → K� TRANSITIONS

The study shown above suggests the possibility to improve
the description of data by implementing, in the K� channels,
the contribution of resonances located around 2 and 2.2 GeV.
This procedure is motivated by previous resonance models

TABLE III. Values of the parameters and the corresponding χ2
d.o.f., defined as in Eq. (26), for the different fits described in the text. The

value of the pion decay constant is fπ = 93 MeV and the subtraction constants are taken at a regularization scale μ = 1 GeV.

WT (no K�) NLO (no K�) WT NLO

aK̄N (10−3) −1.681 ± 0.738 5.151 ± 0.736 −1.986 ± 2.153 6.550 ± 0.625
aπ� (10−3) 33.63 ± 11.11 21.61 ± 10.00 −248.6 ± 122.0 54.84 ± 7.51
aπ� (10−3) 0.048 ± 1.925 3.078 ± 2.101 0.382 ± 2.711 −2.291 ± 1.894
aη� (10−3) 1.589 ± 1.160 −10.460 ± 0.432 1.696 ± 2.451 −14.16 ± 12.69
aη� (10−3) −45.87 ± 14.06 −8.577 ± 0.353 277.8 ± 139.1 −5.166 ± 0.068
aK� (10−3) −78.49 ± 47.92 4.10 ± 12.67 30.85 ± 10.58 27.03 ± 7.83
f/fπ 1.202 ± 0.053 1.186 ± 0.012 1.202 ± 0.119 1.197 ± 0.008
b0 (GeV−1) −0.861 ± 0.014 −1.214 ± 0.014
bD (GeV−1) 0.202 ± 0.011 0.052 ± 0.040
bF (GeV−1) 0.020 ± 0.057 0.264 ± 0.146
d1 (GeV−1) 0.089 ± 0.096 −0.105 ± 0.056
d2 (GeV−1) 0.598 ± 0.062 0.647 ± 0.019
d3 (GeV−1) 0.473 ± 0.026 2.847 ± 0.042
d4 (GeV−1) −0.913 ± 0.031 −2.096 ± 0.024

χ 2
d.o.f. 0.62 0.39 2.57 0.65
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TABLE IV. Properties of the three- and four-star hyperon res-
onances in the mass range 1.89 < M < 2.35 GeV taken from the
results of the PDG review [56].

Resonance I (J P ) Mass (MeV) � (MeV) �K�/�

�(1890) 0( 3
2

+
) 1850–1910 60–200

�(2100) 0( 7
2

−
) 2090–2110 100–250 <3%

�(2110) 0( 5
2

+
) 2090–2140 150–250

�(2350) 0( 9
2

+
) 2340–2370 100–250

�(1915) 1( 5
2

+
) 1900–1935 80–160

�(1940) 1( 3
2

−
) 1900–1950 150–300

�(2030) 1( 7
2

+
) 2025–2040 150–200 <2%

�(2250) 1(??) 2210–2280 60–150

studying � production [34–38], which indicate the need
to take into consideration the K̄N → Y → K� transition
amplitudes, where Y stands for some high spin resonance
coupling significantly to the K̄N , K� channels.

In the energy range of interest, the PDG compilation [56]
gives eight resonances with three- and four-star status with
masses lying in the range 1.89 < M < 2.35 GeV; see Table IV.
Unfortunately, explicit branching ratios to K� decay have not
been determined and only upper limits are given for two of
these resonances: <3% for the �(2100) and <2% for �(2030).
The natural main decay channels for all these resonances are
π� (for � states), π�, and K̄N , while the branching ratios to
K� decay are expected to be small, since this process requires
the creation of an additional s̄s pair. However, cross sections
for the K̄N → K� reactions are more than two orders of
magnitude smaller than, for example, those of the K̄N → π�
and K̄N → K̄N processes, hence even small branching ratios
can contribute appreciably to the former reactions. Thus, it
is interesting to investigate the role of these above-threshold
resonances. Note that most of these resonances have high spins,
and therefore require a special treatment, analogous to that
performed in [34–36,55].

Inspecting the resonance properties shown in Table IV and
the results of the NLO fit presented in Fig. 3, the �(2030)
and �(2250) resonances seem to be good candidates to be
implemented in our model. The two selected candidates also
coincide with the findings of Ref. [36], where it was concluded
that these two resonances gave the best account of data, after
various combinations of several resonances from the eight
known ones were examined. The spin and parity Jπ = 7/2+
of the �(2030) are well established. Those of the �(2250)
are not known, but the most probable assignments are 5/2− or
9/2− [56]. We choose Jπ = 5/2− to simplify the calculations,
noting also that the 9/2− choice does not change the results
drastically as has been shown in [36].

A. Formalism

The K̄N → K+�−, K0�0 reaction cross sections are
obtained adding to the corresponding chiral unitary model
amplitude T (s ′,s), described in the previous section, the
contributions from the K̄N → �(2030) → K� and K̄N →

�(2250) → K� transitions, denoted by T 7/2+
(s ′,s) and

T 5/2−
(s ′,s) respectively, which are built as described below.

Adopting the Rarita-Schwinger method, as in [35], the spin-
5/2 and -7/2 baryon fields are described by a rank-2 tensor
Y

μν
5/2 and a rank-3 tensor Y

μνα
7/2 , respectively. The Lagrangians

are

L5/2±
BYK (q) = i

gBY5/2K

m2
K

B̄�(±)Y
μν
5/2∂μ∂νK + H.c. (27)

for the spin-5/2 resonance and

L7/2±
BYK (q) = −gBY7/2K

m3
K

B̄�(∓)Y
μνα
7/2 ∂μ∂ν∂αK + H.c. (28)

for the spin-7/2 one, where �(±) = (
γ5

1 ), and gBYJ K stands for

the baryon-kaon-YJ coupling. The corresponding propagators
are given by [35]

S5/2(q) = i

q/ − MY5/2 + i�5/2/2
�β1β2

α1α2
, (29)

S7/2(q) = i

q/q − MY7/2 + i�7/2/2
�β1β2β3

α1α2α3
, (30)

where we have included the decay width �J of the correspond-
ing resonance. The tensors � are defined as

�β1β2
α1α2

(
5

2

)
= 1

2

(
θβ1
α1

θβ2
α2

+ θβ2
α1

θβ1
α2

) − 1

5
θα1α2θ

β1β2

+ 1

10

(
γ̄α1 γ̄

β1θβ2
α2

+ γ̄α1 γ̄
β2θβ1

α2

+ γ̄α2 γ̄
β1θβ2

α1
+ γ̄α2 γ̄

β2θβ1
α1

)
, (31)

�β1β2β3
α1α2α3

(
7

2

)
= 1

36

∑
P (α)P (β)

(
θβ1
α1

θβ2
α2

θβ3
α3

− 3

7
θβ1
α1

θα2α3θ
β2β3 − 3

7
γ̄α1 γ̄

β1θβ2
α2

θβ3
α3

+ 3

35
γ̄α1 γ̄

β1θα2α3θ
β2β3

)
, (32)

where θν
μ = gν

μ − qμqν/M2
Y , γ̄μ = γμ − qμq/q/M2

Y , with MY

being the pertinent resonance mass. The tensor � for the
spin-7/2 field, given in Eq. (32), contains a summation over
all possible permutations of Dirac indexes {α1α2α3} and
{β1β2β3}.

From the Lagrangians of Eqs. (27) and (28) one derives the
baryon-kaon-YJ vertices:

v
5/2±
BYK = i

gBY5/2K

m2
K

kμkν�
(±), (33)

v
7/2±
BYK = −gBY7/2K

m3
K

kμkνkσ�(∓). (34)

The resonant contributions to the K̄N → K� scattering
amplitudes can then be obtained straightforwardly as

T
5/2−

K̄N→K�
(s ′,s) = F5/2 ūs ′

�(p′)k′
β1

k′
β2

S5/2(q)kα1kα2us
N (p),

(35)
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and

T
7/2+

K̄N→K�
(s ′,s) = F7/2 ūs ′

�(p′)k′
β1

k′
β2

k′
β2

S7/2(q)

× kα1kα2kα3us
N (p), (36)

where we have included a form factor,

FJ = g�YJ K gNYJ K̄

m2J−1
K

exp
(−�k2/�2

J

)
exp

(−�k′2/�2
J

)
, (37)

which inserts a phenomenological exponential function,
exp (−�q 2/�2

J ), in each vertex to suppress high powers of
the meson momentum from the vertex contributions, see
Eqs. (35) and (36), as it was done in [36]. Strictly speaking the
exponential factors in Eq. (37) are not genuine form factors,
since these should depend on the off-shell momentum of
the off-shell particle and should be normalized to 1 at the
on-shell point. The “form factor” in Eq. (37) is just an ad hoc
function introduced to modify the energy dependence of the
resonance contribution. This prescription, however, is used
in the resonance based model of [36], which inspired us to
complement our study with the inclusion of resonances. So,
we have decided to employ it for a more direct comparison with
the above cited paper. Furthermore, in Ref. [36] the authors
have studied different forms of form factor, and they claim
that the exp (−�q 2/�2

J ) form gives the best χ2
d.o.f. result. In

order to verify this statement we have also tried form factors
depending on the four-momentum squared of the off-shell
resonance, either in the form exp{−(k2 − M2

YJ
)/�2

J }, which
has the same asymptotic behavior at high values of the meson
trimomentum �q, or via the function �4

J /[�4
J + (k2 − M2

YJ
)2],

employed in the recent work of [39]. In the results sections we
will discuss the consequences of the choice of form factor on
the data fitting.

Finally, for the initial K−p, K̄0n channels and final K+�−,
K0�0 ones we obtain√

4MpM�T tot
ij (s ′,s) = √

4MpM�Tij (s ′,s)

+ T
5/2−
ij (s ′,s) + T

7/2+
ij (s ′,s), (38)

where the amplitudes T R
ij (s ′,s) contain the appropriate Clebsh-

Gordan coefficients projecting the states i and j states into the
isospin 1 of the 5/2− and 7/2+ resonances included here.
One can then proceed to derive the observables, following
Eqs. (18)–(24).

The chiral unitary model of the previous section is limited to
s-wave interactions and, therefore, gives rise to flat differential
cross sections. On the contrary, the high spin resonance
mechanisms described in this section introduce an angular
dependence in the amplitudes of the K� production channels,
permitting a study of the differential cross sections for these
channels, which are given by

dσij

d�
= 1

64π2

4MiMj

s

kj

ki

Sij , (39)

where Sij is obtained from Eq. (18), but employing the T tot
ij

amplitude of Eq. (38).

B. Data treatment and fits

Since the new high spin resonant terms produce angular
dependent scattering amplitudes, we will consider, in addition
to the total cross sections and threshold observables listed
in Table I, the differential cross sections of the K−p →
K� reactions taken from the same sources [46–52]. More
specifically, the fits in this section will include two new
observables: the 235 differential cross section points from the
K+�− production reaction and 76 differential cross section
points from the K0�0 one. Thus we increase the total number
of experimental points to 477 instead of the 161 employed in
the fits of the previous section. With the aim of preserving
the same weight for each observable, the same definition of
the χ2

d.o.f., Eq. (26), is employed. However, in the new fit the
overall weight of the K� channels is larger, since there are
two new observables related to these.

It must be also mentioned that a large amount of new points,
more dispersed, could rise the contribution to χ2

d.o.f., but, as we
will see, we gain in having a better overall description of the
K−p → K� reactions while fully respecting an acceptable
accuracy for the other observables.

We will present results for three different fits, all of them
employing the data of the previous section plus the differential
cross section data of the K� production reactions:

(i) A fit denoted by NLO*, which employs the NLO
interaction kernel without any additional resonance
contribution. Thus, this fit is completely analogous to
the NLO fit from the previous section, and correspond-
ingly the resulting curves for the NLO* differential
cross sections of the K−p → K� reactions will
be flat, without any angular dependence. However
taking into account the new experimental points of
the differential cross sections we give a larger weight
to the K� channels, as discussed above, therefore we
expect a slight modification of the model parameters
with respect to the NLO fit from the previous section.
We would like to remind that there are 14 free
parameters involved in the NLO* fit: the pion decay
constant f , the six subtraction constants, and the seven
low energy constants of the NLO Lagrangian.

(ii) Another fit, denoted by WT+RES, which employs
the lowest order kernel of the chiral Lagrangian and
adds the resonant terms described in this section.
This fit has 15 free parameters: the same seven
parameters as those for the lowest order fits of the
previous section (f and the six subtraction constants)
plus eight new parameters associated to the resonant
terms, namely masses and widths of the resonances
(MY5/2 , MY7/2 , �5/2, and �7/2), the product of couplings
(g�Y5/2K gNY5/2K̄ and g�Y7/2K gNY7/2K̄ ) and the cutoff
in the form factors (�5/2 and �7/2). This fit aims
at exploring whether the background terms could
be accounted only through the lowest order chiral
Lagrangian, while the K� channels can be covered
by the resonant terms.

(iii) Finally, a fit denoted by NLO+RES, which incorpo-
rates the NLO interaction kernel together with the
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TABLE V. Threshold observables obtained from the NLO*, WT+RES, and NLO+RES fits explained in the text. Experimental data are
taken from [19,53,54].

γ Rn Rc ap(K−p → K−p) �E1s �1s

NLO* 2.37 0.189 0.664 −0.69 + i 0.86 300 570
WT+RES 2.37 0.193 0.667 −0.73 + i 0.81 307 528
NLO+RES 2.39 0.187 0.668 −0.66 + i 0.84 286 562

Expt. 2.36 0.189 0.664 −0.66 + i 0.81 283 541
±0.04 ±0.015 ±0.011 (±0.07) + i (±0.15) ±36 ±92

high spin resonance contributions in the K−p →
K+�−, K0�0 channels. This fit determines 22 free
parameters: the same 14 as in the NLO* fit and
the new eight parameters associated to the resonant
terms. This is the most complete calculation that, upon
comparison with the results of the previous WT+RES
fit, will assess the actual role of the NLO terms in the
chiral Lagrangian and will determine the value of their
low energy constants.

We note that not all parameters are fully free. We constrain
masses and widths of the resonances to lie within the ranges
given in the PDG compilation [56] (see Table IV) and the form-
factor cutoff values are constrained in the range 500 MeV <
�J < 1000 MeV.

C. Results and discussion

In this section we discuss the results of the fits described
above which, differently from those shown in Sec. II C, have
also included the differential K−p → K� cross sections in
the fitting procedure. The results for the threshold observables
shown in Table V indicate that, even if the fits now adjust
new data at higher energies and may contain the additional
effect of resonant terms, as in the case of WT+RES and
NLO+RES, the low energy data keeps being very well
described. A similar situation is found when inspecting the
cross sections obtained from the three fits for the K−p →
K−p, K̄0n, π−�+, π+�−, π0�0, π0� reactions shown in
Fig. 4.

Obviously, the differences between these fits are more
evident in the total and differential cross sections of the K�
production channels shown in Figs. 5–7. First we note that
the total cross sections for K� production obtained from the
NLO* fit (dashed lines in Fig. 5) are in reasonable agreement
with the data, even if the resonant terms are not included. As it
was discussed above, this NLO* fit is very similar to the NLO
one of the previous section, but it also tries to accommodate
the differential K� production cross section data, which can
only be adjusted on average, as shown by the dashed lines in
Figs. 6 and 7, because of the flat distribution characteristic of
s-wave models.

In order to account for some structure in the differential K�
production cross sections we need to implement the resonant
terms. When they are added to the unitarized amplitudes
obtained from the lowest order chiral Lagrangian, one finds
the results denoted by the dotted lines, or WT+RES fit, in
Figs. 5–7. It is clear that, although some structure is gained

in the differential cross sections and, hence, their description
improves substantially than in the absence of resonances, the
total K� production cross sections are poorly reproduced
by the WT+RES fit. In other words, the background terms
encoded in the lowest order chiral Lagrangian, which only
contribute via unitarization, are insufficient to account for the
whole set of K� production data satisfactorily. This situation
is remedied when the chiral Lagrangian is taken at NLO. In this
case, one finds a clear overall improvement in the description
of the data. The solid lines in Figs. 5–7 clearly demonstrate
that the NLO+RES fit reproduces satisfactorily the K� total
cross sections, while accounting quite reasonably for the
differential ones. Our model fails especially at backward
angles for the higher K− energies. Obviously, including the
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FIG. 4. (Color online) Total cross sections of the K−p →
K−p, K̄0n, π−�+, π+�−, π 0�0, π 0� reactions for the NLO* fit
(dashed line), the WT+RES fit (dotted line), and the NLO+RES fit
(solid line). Experimental data are from [42–45]. The points in red
have not been included in the fitting procedure.
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FIG. 5. (Color online) Total cross sections of the K−p →
K0�0, K+�− reactions for the NLO* fit (dashed line), the WT+RES
fit (dotted line), and the NLO+RES fit (solid line); see the text for
more details. Experimental data are from [46–52].
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FIG. 6. (Color online) Differential cross section of the K−p →
K0�0 reaction for the NLO* fit (dashed line), the WT+RES fit (dotted
line), and the NLO+RES fit (solid line); see the text for more details.
Experimental data are from [46–52].

0
10
20
30
40

s1/2=1.95 GeV

0
10
20
30
40

s1/2=1.97 GeV

0
20
40
60 s1/2 =2.07 GeV

0
20
40
60s1/2=2.11 GeV

0
15
30
45

dσ
/d

Ω
  (

μb
/s

r)

s1/2=2.14 GeV

0
10
20
30s1/2=2.24 GeV

0
10
20
30
40 s1/2=2.28 GeV

0
10
20
30s1/2=2.33 GeV

0
10
20
30 s1/2=2.42 GeV

-0.5 0 0.5 1
cosθ

0
10
20
30s1/2=2.48 GeV

-1 -0.5 0 0.5 1
cosθ

0
2
4
6 s1/2=2.79 GeV

FIG. 7. (Color online) Differential cross section of the K−p →
K+�− reaction for the NLO* fit (dashed line), the WT+RES fit
(dotted line), and the NLO+RES fit (solid line); see the text for more
details. Experimental data are from [46–52].

role of additional hyperon resonances in s- and u-channel
configurations could improve these deficiencies. However,
this goes beyond the purpose of this paper, which focuses
on demonstrating the essential role that the K−p → K�
reactions have in determining the low energy constants of
the NLO chiral Lagrangian, as we emphasize again below. It
is also worth mentioning that the inclusion of the high-spin
resonances in the fit is very time consuming: the calculations
are prolonged by a factor 100, from several hours to several
weeks.

One can judge the goodness of the fits discussed in this
section by inspecting the obtained χ2

d.o.f., shown in Table VI
together with the values of the fitted parameters. The first
observation that we can make is that, even if the NLO* fit
shows a similar quality as the NLO fit of the previous section
in reproducing the cross section data, it has twice its χ2

d.o.f.
value. This is due to the additional differential cross section
data employed in the NLO* fit, which can only be reproduced
on average, leaving the predictions quite far away from the
experimental points in some cases. Also we can see that the
parameters of these two fits are rather similar.

It is interesting to point out that, although the resonant terms
naturally improve the description of the K� differential cross
section data, when the chiral Lagrangian is kept up to the lowest
order, then the corresponding WT+RES χ2

d.o.f. value increases
in about one unit with respect to the nonresonant NLO* fit.
This just reflects the inability of the lowest order Lagrangian
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TABLE VI. Values of the parameters and the corresponding χ2
d.o.f., defined as in Eq. (26), for the different fits described in the text. The

value of the pion decay constant is fπ = 93 MeV and the subtraction constants are taken at a regularization scale μ = 1 GeV.

NLO* WT+RES NLO+RES

aK̄N (10−3) 6.799 ± 0.701 −1.965 ± 2.219 6.157 ± 0.090
aπ� (10−3) 50.93 ± 9.18 −188.2 ± 131.7 59.10 ± 3.01
aπ� (10−3) −3.167 ± 1.978 0.228 ± 2.949 −1.172 ± 0.296
aη� (10−3) −15.16 ± 12.32 1.608 ± 2.603 −6.987 ± 0.381
aη� (10−3) −5.325 ± 0.111 208.9 ± 151.1 −5.791 ± 0.034
aK� (10−3) 31.00 ± 9.441 43.04 ± 25.84 32.60 ± 11.65
f/fπ 1.197 ± 0.011 1.203 ± 0.023 1.193 ± 0.003
b0 (GeV−1) −1.158 ± 0.021 −0.907 ± 0.004
bD (GeV−1) 0.082 ± 0.050 −0.151 ± 0.008
bF (GeV−1) 0.294 ± 0.149 0.535 ± 0.047
d1 (GeV−1) −0.071 ± 0.069 −0.055 ± 0.055
d2 (GeV−1) 0.634 ± 0.023 0.383 ± 0.014
d3 (GeV−1) 2.819 ± 0.058 2.180 ± 0.011
d4 (GeV−1) −2.036 ± 0.035 −1.429 ± 0.006
g�Y5/2K gNY5/2K̄ −5.42 ± 15.96 8.82 ± 5.72
g�Y7/2K gNY7/2K̄ −0.61 ± 14.12 0.06 ± 0.20
�5/2 (MeV) 576.7 ± 275.2 522.7 ± 43.8
�7/2 (MeV) 623.7 ± 287.5 999.0 ± 288.0
MY5/2 (MeV) 2210.0 ± 39.8 2278.8 ± 67.4
MY7/2 (MeV) 2025.0 ± 9.4 2040.0 ± 9.4
�5/2 (MeV) 150.0 ± 71.3 150.0 ± 54.4
�7/2 (MeV) 200.0 ± 44.6 200.0 ± 32.3

χ 2
d.o.f. 1.48 2.26 1.05

of producing enough strength, which we recall comes from
unitarization, to interfere efficiently with that of the resonant
terms. This gives rise to a poor description of the K� total
cross section data and, consequently, to an unreasonably large
χ2

d.o.f. value. As in the previous section, the size of some of
the subtraction constants of this fit turn out to be unphysically
large. We then find again that the NLO terms of the chiral
Lagrangian are essential to account for the K� data. This is
reflected in a reduction of the corresponding NLO+RES χ2

d.o.f.
value, which turns out to be of around 1.

We have also performed fits with the two choices of form
factor that depend on the off-shell four-momentum of the
resonance and are normalized to 1 at the on-shell point, namely
exp{−(k2 − M2

YJ
)/�2

J } and �4
J /[�4

J + (k2 − M2
YJ

)2] [see dis-
cussion after Eq. (37)]. We have found that the χ2

d.o.f. worsens,
giving in both cases a value of 1.25 versus the 1.05 value ob-
tained for the ad hoc prescription, in complete agreement with
the claims made in Ref. [36]. Interestingly, the corresponding
NLO parameters do not change significantly and remain quite
similar to the NLO+RES ones shown in Table VI.

The important role of the K� channels in constraining the
NLO terms of the chiral Lagrangian has already been shown
in the previous section, where the corresponding low energy
constants, obtained including the K� production total cross
section data in the NLO fit, changed appreciably with respect
to those of the NLO (no K�) fit. In this section, we have
seen how the description of data, which now includes the
additional K� differential cross sections, is further improved
when we supplement the NLO Lagrangian with the resonant
terms. We observe that, although there is a slight readjustment

of the parameters of the NLO+RES fit with respect to those
of the NLO* fit, they have gained in precision significantly.
This is due to the stabilizing role of the resonant terms, which
implement an important part of the energy dependencies, hence
relegating the role of the NLO Lagrangian contribution to
be a smooth background. This is in line to the contribution
of the contact term introduced ad hoc in the resonant
model of Ref. [38] to account for the strong � production
data.

We also comment on the resonance parameters obtained by
our NLO+RES fit. First of all, we would like to remind the
reader that the masses and widths are constrained to lie within
the experimentally measured bounds [56]. As we can see in
Table VI the product of couplings and the form factors are not
very well constrained by the fit.

As mentioned already, we complemented our study with
the inclusion of high spin hyperonic resonances being inspired
by the work of [36], but we would like to point out that a direct
comparison of the resonance parameters of our model with
those of [36] is not straightforward. This is also the case when
comparing similar resonance based models. For instance, the
resonance parameters obtained in [36] are quite different than
those in [39],1 and the high-spin resonance contributions may
differ by more than a factor of 2 in both resonance models.

1For a proper comparison, note that the dimensionless couplings
given in [39], as well as those of the present work, are given in units
of the kaon mass, while those of [36] use the pion mass.
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The reason is that the effect of these resonances depends very
much on the interference with the background terms. Clearly,
different backgrounds will result in rather different coupling
sizes and even signs, as it was shown in [39]. However, the
big advantage of our approach is that our “background terms”
are completely determined by a theoretically supported chiral
model. Still, trying to compare our results with those of [36],
where “form factors” of the same type have been used, we
observe that, while our value of g�Y5/2K gNY5/2K̄ turns to be
comparable, although having an opposite sign, to that obtained
in the resonant model of Ref. [36], the product g�Y7/2K gNY7/2K̄

is almost three orders of magnitude smaller. Note, however,
that this has also to be viewed together with the effect of the
form factor, which in the present work is more moderate, since
the cutoff values turn out to be larger, especially for the 7/2+
resonance, than the 440-MeV value employed in [36].

We have also tried to make a fit with three resonances,
implementing an additional P -wave state in our model, lying
close to the K� threshold. This could be for example the
�(1890) 3/2− resonance, also included in [39]. However, we
find that a resonance of this type does not improve substantially
the quality of the fit. The change of χ2

d.o.f. from 1.05 to 1.04,
while keeping the NLO parameters rather stable and similar to
those quoted in Table VI, does not compensate, in our opinion,
the increase of complexity of the problem and of the necessary
computing time.

Finally, we would like to mention again the (unexpected)
stability of the pion decay width parameter f which stays
around 1.195 in all the fits.

IV. CONCLUSIONS

In this work, we have presented a study of the S =
−1 meson-baryon interaction, employing a chiral SU(3)
Lagrangian up to next-to-leading order and implementing
unitarization in coupled channels. The parameters of the
Lagrangian have been fitted to a large set of experimental
scattering data in different two-body channels, to γ , Rn,
and Rc branching ratios, and to the precise SIDDHARTA
value of the energy shift and width of kaonic hydrogen.
In contrast to other works, we have also constrained our
model to reproduce the K−p → K+�−, K0�0 reactions,
since they become especially sensitive to the NLO terms, as

they cannot proceed with the LO Lagrangian, except indirectly
via unitarization contributions.

By comparing different fitting procedures, we have shown
in the first part of our study that the NLO order terms of the
chiral Lagrangian are important and a necessary ingredient of
the model, since they help in achieving a better description of
data. A novelty of the present work is that we have clearly
established the sensitivity of the NLO Lagrangian to the
K−p → K� reactions. Therefore, by implementing the cross
section data for K� production in the fitting procedure, we
have been able to obtain more accurate values of the low
energy constants of the NLO chiral Lagrangian.

In the second part of this work, we have allowed for the
explicit contribution of two high spin hyperon resonances
to the K−p → K� amplitudes, aiming at establishing an
appropriate amount for the background, which in this work is
associated to the chiral contributions, and, hence, obtain more
reliable values of the associated low energy constants. Since
the resonant terms introduce an angular dependence in the am-
plitudes, we also attempt the description of the K� differential
cross sections. We find the resonant terms to have a double
benefit. On the one hand, they allow for a reasonable overall
description of the scattering data, including the total and the
differential cross sections of the K� production reactions.
On the other hand, by absorbing certain structures of the cross
section, the inclusion of resonant contributions permits finding
a more stable solution and therefore more precise values of the
low energy constants of the chiral unitary model.

Summarizing, either taking into account or not the high spin
hyperon resonances, the present work has clearly shown for the
first time that the NLO corrections of the chiral Lagrangian are
absolutely necessary to reproduce the K−p → K� reaction
data, and, conversely, taking into account these data permits a
more precise and trustable determination of the corresponding
NLO parameters.
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TABLE VII. Cij coefficients of Eq. (8).

K−p K̄0n π 0� π 0�0 η� η�0 π+�− π−�+ K+�− K0�0

K−p 2 1
√

3/2 1/2 3/2
√

3/2 0 1 0 0
K̄0n 2 −√

3/2 1/2 3/2 −√
3/2 1 0 0 0

π 0� 0 0 0 0 0 0
√

3/2 −√
3/2

π 0�0 0 0 0 2 2 1/2 1/2
η� 0 0 0 0 3/2 3/2
η�0 0 0 0

√
3/2 −√

3/2
π+�− 2 0 1 0
π−�+ 2 0 1
K+�− 2 1
K0�0 2
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TABLE VIII. Dij and Lij coefficients of Eq. (10).

Dij coefficients

K−p K̄0n π0� π0�0 η� η�0 π+�− π−�+ K+�− K0�0

K−p 4(b0 + bD)m2
K 2(bD + bF )m2

K

−(bD+3bF )μ2
1

2
√

3

(bD−bF )μ2
1

2
(bD+3bF )μ2

2
6

−(bD−bF )μ2
2

2
√

3
0 (bD − bF )μ2

1 0 0

K̄0n 4(b0 + bD)m2
K

(bD+3bF )μ2
1

2
√

3

(bD−bF )μ2
1

2
(bD+3bF )μ2

2
6

(bD−bF )μ2
2

2
√

3
(bD − bF )μ2

1 0 0 0

π0�
4(3b0+bD )m2

π
3 0 0 4bDm2

π
3 0 0

−(bD−3bF )μ2
1

2
√

3

(bD−3bF )μ2
1

2
√

3

π0�0 4(b0 + bD)m2
π

4bDm2
π

3 0 0 0
(bD+bF )μ2

1
2

(bD+bF )μ2
1

2

η�
4(3b0μ2

3+bDμ2
4)

9 0 4bDm2
π

3
4bDm2

π
3

(bD−3bF )μ2
2

6
(bD−3bF )μ2

2
6

η�0 4(b0μ2
3+bDm2

π )
3

4bF m2
π√

3

−4bF m2
π√

3

−(bD+bF )μ2
2

2
√

3

(bD+bF )μ2
2

2
√

3

π+�− 4(b0 + bD)m2
π 0 (bD + bF )μ2

1 0

π−�+ 4(b0 + bD)m2
π 0 (bD + bF )μ2

1

K+�− 4(b0 + bD)m2
K 2(bD − bF )m2

K

K0�0 4(b0 + bD)m2
K

Lij coefficients

K−p K̄0n π0� π0�0 η� η�0 π+�− π−�+ K+�− K0�0

K−p 2d2 + d3 + 2d4 d1 + d2 + d3
−√

3(d1+d2)
2

−d1−d2+2d3
2

d1−3d2+2d3
2

d1−3d2
2
√

3
−2d2 + d3 −d1 + d2 + d3 −4d2 + 2d3 −2d2 + d3

K̄0n 2d2 + d3 + 2d4

√
3(d1+d2)

2
−d1−d2+2d3

2
d1−3d2+2d3

2
−(d1−3d2)

2
√

3
−d1 + d2 + d3 −2d2 + d3 −2d2 + d3 −4d2 + 2d3

π0� 2d4 0 0 d3 0 0
√

3(d1−d2)
2

−√
3(d1−d2)

2

π0�0 2(d3 + d4) d3 0 −2d2 + d3 −2d2 + d3
d1−d2+2d3

2
d1−d2+2d3

2

η� 2(d3 + d4) 0 d3 d3
−d1−3d2+2d3

2
−d1−3d2+2d3

2

η�0 2d4
2d1√

3
−2d1√

3
−(d1+3d2)

2
√

3
d1+3d2

2
√

3

π+�− 2d2 + d3 + 2d4 −4d2 + 2d3 d1 + d2 + d3 −2d2 + d3

π−�+ 2d2 + d3 + 2d4 −2d2 + d3 d1 + d2 + d3

K+�− 2d2 + d3 + 2d4 −d1 + d2 + d3

K0�0 2d2 + d3 + 2d4
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APPENDIX: TABLES OF COEFFICIENTS

Table VII presents the Cij coefficients of Eq. (8), while
Table VIII presents the Dij , Lij coefficients of Eq. (10).
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