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Abstract 22 

Dielectrophoretic alignment is found to be a simple and efficient method to deposit the solution 23 

prepared ZnO nanowires onto micro hot plate substrates. Due to the strong surface effects, 24 

positive temperature coefficient for resistance was encountered with ZnO nanowires in the high 25 

temperature range (>250
o
C). The response to ammonia (NH3) was evaluated in isothermal and 26 

temperature-pulsed operation mode; the relative higher response observed in the latter case 27 

demonstrates that the use of this methodology is a good strategy to improve the performance of 28 

metal oxide sensors based on nanomaterials. Here, we evaluate the response to NH3 and 29 

qualitatively describe the sensing mechanism in temperature-pulsed mode, highlighting the main 30 

differences compared to the standard isothermal methodology. 31 
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1. Introduction 43 

Silicon on insulator (SOI) [1] technology offers the possibility of fabricating mono-crystalline 44 

silicon electronics with good thermal isolation. Micro hot plates (μHPs) based on standard 45 

complementary metal oxide semiconductor (CMOS) processing technology [2] using tungsten 46 

(W) metallization [3] and/or the SOI layer for the micro-heater are an ideal choice of substrates 47 

for resistive metal oxides (MOX) gas sensors. In addition to the very low power consumption 48 

(tens of mW in DC operation) and fast thermal response (tens of ms) [3], they can be cost 49 

effectively manufactured in high volume and integrated with other functional electronics [4, 5]. 50 

On top of the μHPs (above the micro-heater), inter digital electrodes (IDEs) are usually patterned 51 

to monitor the resistance variation in the sensing layer during the change of gas compositions at 52 

the elevated temperature. The size of the whole device is often mm × mm and the dimensions of 53 

the IDEs above the heater are of hundreds of micrometers. The miniaturization of the devices 54 

creates however a challenge, i.e., the deposition of sensing materials onto the micro-heater 55 

membrane in an effective way [6].  56 

Conventional non-localized deposition techniques, e.g., sputtering [7-9], evaporation [10], spray 57 

coating [11] or electro-spinning [12] have to be combined with lithography of a deposition 58 

window or alignment of shadow masks; whereas localized deposition techniques that utilize the 59 

internal micro-heater to activate the growth have to use vapor phase precursors [6]. And if seed 60 

layers are required for the localized growth, the non-localized techniques are again needed to 61 

first produce them [13-15]. In the case of high precision screen printing [16], the deposition has 62 

to be made before the backside etching of the membrane to avoid its damage, making it 63 

inconvenient to the user of post CMOS wafer stage. Another set of techniques are those based on 64 

the direct deposition of sensing materials presented in liquid form by micro droplet coating [17, 65 



18] or ink-jet printing [19, 20]. Apart from preparing the stable material suspension and the 66 

dedicated apparatuses, these two techniques also lack the capability of manipulating 67 

nanomaterials, e.g., the alignment of nanowires.  68 

Dielectrophoretic (DEP) technique has been used to manipulate nanomaterials [21-24], 69 

especially metal [25] and semiconductor [23, 26] nanowires. The DEP force arises from the 70 

polarization of non-charged elements in a non-uniform electric field and attracts the object to the 71 

electrodes. It has been successfully applied to align nanowires [25, 27] or nanorods [28, 29] onto 72 

different substrates for later sensing purposes, and it is suggested to be fully compatible with the 73 

standard CMOS technology for wafer-scale implementation [30, 31].  74 

MOXs are the most typical compounds studied and used as low cost resistive sensing materials. 75 

ZnO nanowires in particular have been identified as potential candidates to fabricate new devices 76 

[32]. Although ZnO nanowire-based gas sensors have been intensively studied in the last few 77 

years and promising results have been demonstrated [33-35], improvements are still needed to 78 

bring them into the commercial stage. On the other hand, μHP gas sensors are often investigated 79 

under the so-called temperature-programmed/modulated operation mode [36-40]. In this 80 

approach, the sensors are subjected to pulses of different temperatures and duration, instead of 81 

keeping the sensors' temperature at constant. Improvement of the sensors' selectivity and even 82 

quantification of gases [41, 42] can be achieved by pattern reading and data analysis. A variant to 83 

that is the so called temperature-pulsed operation mode [18, 41, 43, 44], in which the 84 

temperature of the sensor is constantly changed between two values (low and high) every few 85 

seconds and the resistance variation due to analyte gas at the low or high temperature end define 86 

the sensor response. With this approach, the sensitivity enhancement at the low temperature end 87 

is usually found. 88 



In this work, the material deposition onto μHPs was further developed by applying the DEP 89 

alignment of ZnO nanowires at the post CMOS wafer stage. The gas sensing performance of the 90 

devices were tested with NH3 in both conventional isothermal and temperature-pulsed sensing 91 

modes. The mechanism that lies behind the enhanced sensing performance in the temperature-92 

pulsed mode is qualitatively discussed.  93 

 94 

2. Experimental 95 

2.1 Nanowire preparation 96 

ZnO nanowires were obtained by a hydrothermal process reported earlier [45]. In brief, an 80 nm 97 

thick of ZnO seed layer were first sputtered onto indium doped tin oxide (ITO) glass. The ITO 98 

glass was then placed in the growth solution that consist of 0.02 M zincnitrate, 0.015 M 99 

hexamethylenetetramine (HMTA), 0.004 M polyethyleneimine (end-capped, molecular weight 100 

800g/mol) and 0.024 M ammonium hydroxide. The solution was heated to 88°C, and after 3 h, 101 

ZnO nanowires grew to about 6μm in length with diameters ranges between 50 to 300 nm. The 102 

resulting ZnO arrays were rinsed with Mili-Q water and dried with nitrogen flow. More 103 

characterization results with, e.g., x-ray diffraction (XRD), scanning electron microscopy (SEM) 104 

can be found in ref.[45]. The solution of ZnO nanowires was obtained by sonicating the ITO 105 

substrate in isopropanol. 106 

2.2 The μHPs 107 

μHPs were obtained from Cambridge CMOS Sensors (www.ccmoss.com) [5]. The μHPs used in 108 

this work have IDEs made of gold (Au). Au is inert to oxidation and the rough Au surface 109 

provides good attachment to the later deposited nanowires. As shown in Fig.1a, the IDEs span a 110 

http://www.ccmoss.com/


circular area of 250 μm in diameter and the gap between the IDE fingers is 10 μm. The heating 111 

element made of W is buried under the IDEs within the SiO2 insulation. W is used as an 112 

interconnect metal in high temperature CMOS processes and has better stability and lower 113 

mechanical stress compared to poly-Si heaters. The circular SiO2 insulating membrane obtained 114 

by deep reactive ion etching (DRIE) has a diameter of 640 μm and a thickness of about 5 μm. 115 

Several Au bond pads that connect to the heater or IDEs are manufactured on the two sides of the 116 

chips for wire bonding. The maximum temperature the μHPs can reach is about 700°C, while the 117 

power consumption is only about 55 mW at 450°C.  118 

2.3 DEP assembly of nanowires 119 

The μHP chips were glued onto the transistor outline packages (TO-8) and wire bonded with Au 120 

wires (Fig. S1). The devices were then attached to a printed circuit board for ZnO nanowire 121 

deposition and later tests. ZnO nanowire solution in isopropanol was briefly sonicated before use. 122 

A micropipette was used to apply 2 drops (~2.5μl each) of it onto the μHPs when the AC 123 

potential was applied on the IDEs by a function generator (TG2000, TTi). The voltage applied 124 

was 15 Vp-p in square wave at the frequency of 5 MHz. Once the solvent had evaporated, the AC 125 

signal was turned off. The morphology of aligned nanowires on μHPs was examined using a 126 

SEM (Auriga, Zeiss). As the annealing/sintering step, the temperature of the μHPs was raised to 127 

400°C in stepwise and dwelled for 2 h. 128 

2.4 Gas sensing tests 129 

Gas sensing tests were performed with a homemade stainless steel chamber. Gas mixtures were 130 

introduced with thermal mass flow controllers (Bronkhost) by mixing the synthetic air (SA) with 131 

NH3 in SA from the certified gas cylinders (Carburos Metálicos). The total flow rate was always 132 

http://www.baidu.com/link?url=QrFMok4FfCGPJE-FHhiJ_Q9CanzjECOV0e_Cie0MaY60ztda3JTMYMPSg1vrAoZ3


maintained at 200 ml/min. The micro-heater was powered by a source meter (2400, Keithley). 133 

For temperature-pulsed measurement, the pulsed voltage was in square waves and has a period 134 

of 10 s, i.e., the temperature of sensor changed between the low and high regime every 5 s. The 135 

settle time of both rise and fall of the pulsed input voltage were measured to be within 50 ms. 136 

Electrical measurements were made with another source meter (2635A, Keithley). 137 

 138 

3. Results and discussion 139 

3.1 The assembled device 140 

From the microscope images (Fig. 1b&c), we see that most of the nanowires were attached to the 141 

IDEs after the DEP process. The rest of the membrane surface was clean, and the small amount 142 

of nanowires left on the membrane presumably does not affect the overall performance of the 143 

device. As it is shown in Fig. 1c and Fig. S2, both the finger tips and the outmost of the IDEs had 144 

attracted the nanowires more efficiently compared to the center area. This result might arise from 145 

the interference presented at the center area when multiple IDEs fingers with an opposite 146 

potential were located very close to each other. The potential interference from nearby IDEs 147 

fingers can offset the polarization and attraction effects on the nanowires, leaving the center with 148 

fewer nanowires. SEM image in Fig. 2 shows that nanowires were aligned into bundles and 149 

interconnected to each other. Since their lengths are shorter than the gap between the IDEs, 150 

multiple nanowires are required to bridge the gap. Comparing to the nanowries that grow 151 

vertically on the membrane [13-15] and only having their bottom parts in contact with the 152 

membrane, the direct lying of nanowires on the μHP membrane offers better heat transfer 153 

property between the membrane and nanowires. This assures the annealing/sintering step can be 154 



used to strength the connections between the nanowires or nanowire-electrodes. The finally 155 

obtained structures were proved to be stable, since no direct evidence of degradation or change 156 

of their properties was found after regularly testing and handling. This suggests that the bond 157 

strength among nanowires and nanowire-electrodes are strong enough to fabricate functional 158 

devices following our approach. 159 

3.2 Electrical properties  160 

The contact between semiconductor and metal can be either ohmic or rectifying depending on 161 

whether a Schottky barrier is present. Ideally, ohmic contact is obtained with n-type 162 

semiconductor if the work function of the metal is close or smaller than the electron affinity of 163 

the semiconductor [46]. In our case, Au has a work function of 5.1±0.1eV [47] which is larger 164 

than the theoretical electron affinity of ZnO ( 4.2eV) [46]. The room temperature (RT) I-V 165 

curves (inset in Fig. 3a) of the annealed/sintered devices were found non-linear, indicating thus 166 

the formation of Schottky barrier at the Au-ZnO interface. The Schottky barrier however could 167 

be overcome by increasing the temperature [48]. The I-V curves became linear at 200°C and 168 

above, so the contact resistance contribution can be neglected in the later gas sensing 169 

measurements at high temperature. 170 

The current values in I-V tests were found to increase with temperature until 300°C and then 171 

slightly declined at higher temperatures (Fig. 3a). These two opposite trends correspond to the 172 

negative (NTC) and positive temperature coefficients (PTC) of resistance, respectively. The 173 

negative one at low T results from the thermal generation of charge carriers and the overcoming 174 

of the Schottky and nanowire-nanowire junction barriers by electrons. On the other hand, the 175 

PTC after 300°C resembles the results reported for ZnO thin films by Min et al. [9, 49] and 176 



shows the same tendency as those reported for ZnO nanorods [50] and nanofibers [51] in a 177 

slightly varied temperature range. The resistance was further measured with increasing the 178 

temperature in steps (Fig. 3b). The resistance was found to decrease along with the temperature 179 

rise until 250°C and only small drifts were observed during the dwell period. When the μHP 180 

temperature were raised to higher values, immediate drop of resistance were followed by drastic 181 

increase in the dwell period. The final resistance at 300°C has surpassed 250°C and even higher 182 

resistances were reached above this threshold. Such gradual increase of resistance also indicates 183 

that the I-V measurements are dependent on both the temperature and the dwell time at that 184 

temperature. As the I-V results in Fig. 3a were obtained about 1-2 minutes after the temperature 185 

adjustment, it follows the order of R(250
o
C) > R(400

o
C) > R(350

o
C) > R(300

o
C), which is 186 

consistent with Fig. 3b only in the non-stabilized region right after the temperature change 187 

(marked with circles in Fig. 3b). Moreover, the more stabilized region in Fig. 3b with R(400
o
C) > 188 

R(350
o
C) > R(300

o
C) > R(250

o
C) is consistent with Fig. 4 in the next section.  189 

Regarding the origin of the PTC phenomenon, we first exclude the possibility of bulk chemical 190 

structure or composition change as the nanwoires were pre-annealed and had experienced long 191 

hours of repeated gas sensing tests at high temperatures, in which we have seen a stabilized 192 

resistance base line. Furthermore, the nanowire-electrode contacts were shown to be ohmic at the 193 

elevated temperatures, making no contribution to the measured resistance. ZnO nanowires 194 

studied here also do not satisfy the two well-known PTC effects caused by interfaces: the PTC 195 

effect in ferroelectric ceramic materials [52] and the PTC effect in composite oxides materials 196 

[53]. On the other hand, due to the strong surface dependence of nanomaterials, the cause of the 197 

PTC in MOX nanomaterials has been ascribed to the complex dynamics of thermal desorption of 198 

water and related hydroxyl group (-OH) or generation of charged atomic O species (Oˉ/O
2
ˉ) on 199 



the surface [9, 49-51, 54, 55]. For oxygen, the adsorbed molecular O2
- 
dissociate in to Oˉ and O

2
ˉ 200 

at high temperatures, which apparently withdraw the electron more efficiently. And for the 201 

chemisorbed H2O and its by-product -OH, they act as the electron donor to the oxides, lowering 202 

the resistance at low temperature and increasing the resistance when removed by high 203 

temperature. Considering the high defect density of the solution prepared ZnO nanowires, the 204 

defects may have strong influence on their properties and have deeply involved in the as 205 

mentioned surface chemistries. Nevertheless, as will be shown next, despite the presence of the 206 

PTC, it doesn't undermine the capability of ZnO nanowires for gas sensing.  207 

3.3 NH3 sensing   208 

NH3 sensing tests were first performed at temperatures between 200°C and 400°C in the 209 

isothermal mode. As shown in Fig. 4, the response baseline in SA was fixed after the complete 210 

stabilization of the electrical resistance following a change in T. For this reason and in agreement 211 

with the abovementioned positive temperature coefficient of the devices, the initial resistance 212 

was found to slightly increase from 300°C and above. In all cases, nanowires responded to NH3 213 

by decreasing the resistance and the change was reversible when NH3 was purged from the 214 

chamber. The decrease of the resistance upon exposure to NH3 was expected as ZnO is an n-type 215 

semiconductor and NH3 is a reducing gas. Here we define the isothermal mode response Siso to be 216 

        , where     and      are the resistance values in SA and in gas mixture, respectively. 217 

Response and recovery time (tres and trev) were counted as the time it took to complete 90% of the 218 

total resistance change. The optimal working temperature for NH3 (Siso = 4.2 for 200 ppm; 2.3 for 219 

50 ppm and 1.5 for 10 ppm) was found to be 350°C (Fig. 5). At this temperature, tres were 7.4, 220 

6.4 and 3.8 min for 10, 50 and 200 ppm of NH3, and the corresponding trev were 18.4, 19.9 and 221 



21.5 min, respectively. All these values are however convoluted with the dynamics of the 222 

chamber.  223 

A survey of literature reported resistive nano-sensors is given in table S1 of the supplementary 224 

material. The Siso value here obtained is found comparable to other studies of similar materials 225 

[56-58]. Indeed, the dependence of the gas response with the nanowires diameter is a well-226 

known effect [35]; the response clearly benefits from the smaller diameters. This is more 227 

significant with thickness approaching to the Debye length. Herein, ZnO nanowires with 228 

diameters between 50 and 300 nm were tested and the thicker nanowires are believed to be the 229 

major current pathway. So the nanowires diameter is not favored by the high response and 230 

improvement can be simply made by making more uniform and thinner nanowires.   231 

The NH3 response of ZnO nanowires can be explained using the classic model [59] of MOX gas 232 

sensors: the surface oxygen species (molecular O2ˉ and atomic Oˉ, O
2
ˉ) withdraw electrons from 233 

the ZnO, creating a depletion region that acts as a non-conductive region at the surface and 234 

charge transfer barrier between the nanowire junctions (as shown in Fig. 6). When the NH3 is 235 

present, surface reaction occurs between the surface oxygen species and the adsorbed NH3 236 

molecule. These complex surface reactions can be simply described by the following equation 237 

[60]:  238 

O2
−
/O

−
/O

2−
 + NH3 (ad) ↔ N species + H2O + e

-
 239 

With N2 as the main reaction product, electrons are released by the surface reactions and the 240 

resistance of ZnO decreases. In more specific, ohmic contacts formation was previously 241 

confirmed between nanowires and electrodes at the elevated temperatures. So the measured 242 

resistance is composed of the resistance of nanowire themselves (Rnanowire) and the resistance at 243 



nanowire-nanowire junctions (Rjunction). As illustrated in Fig. 6, the surface reactions release the 244 

electrons back into the nanowires, causing the reduction of depletion region width and lowering 245 

of junction potential barriers. The two contributors of the total resistance, Rnanowire and Rjunction are 246 

therefore both lowered and finally lead to the reduction of the measured resistance. 247 

In Fig. 4, it can be noted that the resistance indeed showed upward shifting after a prior drop at 248 

the 10 ppm response of 400°C. And the recovered resistance after 10, 50 ppm exposure exceeded 249 

the base value. Such character could be ascribed to the generation of NO2 in addition to N2 by the 250 

surface reactions; as NO2 is considered to get adsorbed on the surface and withdraws electron 251 

[40, 61, 62]. The reason it appeared only at the low NH3 level and highest temperature might be 252 

the request on high energy and selectively producing of NO2 [57]. Moreover, the counter-253 

balancing effect of NH3 might also cause it to be more visible at the low NH3. All in all, the 254 

ammonia response follows a typical bell-shaped curve (Fig.5), which reveal that ammonia 255 

sensing is (i) a thermally activated process but also that (ii) the response (reaction rate) is given 256 

by the ammonia adsorption-reaction probabilities at the surface, following a non-linear 257 

dependence of the sensor output with increasing concentration. Actually, this behavior was 258 

explained by Ahlers et al. [63] in terms of competing phenomena described by two energetic 259 

parameters: the strength of Langmuir adsorption Eads of NH3 molecules at the surface, and the 260 

activation energy for the combustion reaction ERES. These two factors are thus the decisive 261 

parameters to explain the high-temperature drop-off of the sensitivity S. It must be pointed out 262 

that between 350ºC and 400ºC the response starts to decrease. 263 

In the temperature-pulsed mode, the sensor temperature was continuously changed between a 264 

low (200°C or 250°C) and a higher value for every 5 s. The resistance of the nanowires was 265 

simultaneously recorded when the gas flow was switched from pure SA to 200 ppm NH3 in SA 266 



and then purged back to SA. The resistance in the low temperature end was used to calculate the 267 

corresponding response Spulsed,low. As shown in the Fig. 7, when the sensors were operated in the 268 

temperature-pulsed mode, the low or high end resistance no more equals to that in the isothermal 269 

mode of same temperature. And only the negative temperature coefficient was observed when 270 

changing the temperature in short pulses. A significant enhancement of response Spulsed,low 271 

compared to the isothermal mode of same temperature was observed. For 200°C or 250°C as the 272 

low end temperature, the response Spulsed,low increased with the high end temperature following a 273 

linear dependence (Fig. 8a). And the response Spulsed,low of a particular high end temperature were 274 

highly approximate to each other. This indicates that in this mode, Spulsed,low is determined by the 275 

high end temperature. The relative response compared to that of the isothermal mode was 276 

calculated as ΔS= (Spulsed,low – Siso,low)/Siso,low*100% and given in Fig. 8b. Here, Siso,low is the 277 

isothermal response in the corresponding temperature. From the tests, ΔS with 200°C as the low 278 

end temperature were found to be always higher than that of 250°C, indicating that ΔS also 279 

increases with the difference between the high and the low end temperatures. Although strongly 280 

affected by the chamber volume and the gas flow rate, the response and recovery of the 281 

resistance also became faster in the pulsed mode (see Fig. S3). Overall, the low temperature end 282 

tres at the pulsed mode decreased with increasing high end temperature and the values are about 283 

on a par with that of the isothermal mode in the temperature same to the high end. An equivalent 284 

correlation was found for the recovery. Due to the fact that resistance did not recover completely 285 

within the given time (10 min), the recovery ratio (Rend/RSA*100%, where Rend is the resistance 286 

when ending the SA refill) is defined. With pulsed temperature (especially at 300°C and 350°C 287 

high end T), the recovery ratio of the pulsed mode increased to higher values. 288 



Similar response enhancement effects in the temperature-pulsed mode operation of μHP gas 289 

sensors have been previously reported in several works [18, 41, 43, 44]. As the surface oxygen 290 

species play a key role in the sensing mechanisms of reducing gases, A. Heilig et al. [41], 291 

proposed that the enhancement is mainly caused by the presence of high temperature surface 292 

oxygen species, i.e., Oˉ/O
2
ˉ [59] in the low temperature period, which would be less or not 293 

existed in the equivalent isothermal mode. Oˉ/O
2
ˉ are produced after the dissociation [64] of 294 

surface adsorbed molecular oxygen at high temperatures and remains there in the low 295 

temperature period due to the fast thermal transition of this mode. They strongly regulate the 296 

electron concentration near the surface and when surface reaction with reducing gas occurs, 297 

electrons will be released back to the surface to cause the resistance change. Furthermore, the 298 

higher reactivity of atomic Oˉ/O
2
ˉ with NH3 will also lead to the faster response and recovery 299 

processes. 300 

As mentioned in ref. [18] and [39], the surface cleaning effect during the high temperature period 301 

could also be the reason behind the response enhancement. Here, for the NH3 sensing with ZnO 302 

nanowires, we propose two potential adsorbates that can deteriorate the performance of the 303 

sensor in isothermal mode and can be removed at high temperatures. The first is H2O and its by 304 

product, hydroxyl group (-OH). H2O is a well-known substance that interferes the output of 305 

MOX gas sensors [65, 66]. H2O and its byproduct -OH has been appointed as one of the causes 306 

of positive temperature coefficient in the previous section. There are three sources of H2O that 307 

can be adsorbed onto ZnO surface: i) when the sensor is exposed to ambient air at RT; ii) the 308 

trace level of H2O presented in the SA; iii) the residual H2O in the test chamber. The second 309 

adsorbate is NO2, which was considered to be a secondary product of oxygen-NH3 reaction at the 310 

surface and has a counter effect on NH3 sensing [40, 61, 62]. When operated in the temperature-311 



pulsed mode, the amount of H2O/-OH and NO2 can be diminished during the high temperature 312 

period. Exposing the free surface active sites to O2 and NH3 at low temperature period will 313 

enable a higher response and faster surface sensing mechanisms. Fig. S4 shows, in a shorter time 314 

scale, the resistance of the device working in temperature-pulsed mode between 200 and 350°C 315 

in constant SA flow. As expected, the resistance was found to drift continuously in both high and 316 

low temperature period after a sudden large change due to the fast temperature switch. This 317 

indicates the material was in a meta-stable state, which is evidence to the as proposed sensing 318 

mechanism and the response enhancement.  319 

 320 

4. Conclusions 321 

ZnO nanowires were successfully deposited onto CMOS SOI μHP substrates for gas sensing 322 

applications. By DEP, nanowires prepared from a wide range of methods can be readily 323 

integrated onto μHPs. When working in the pulsed mode, a significant enhancement in the NH3 324 

sensing performance was observed at the low temperature end. It is proposed that this 325 

phenomenon is not only related to the high temperature surface oxygen species but also to the 326 

modulation of H2O (-OH) and N2O on the surface. The combination of the highly advanced 327 

CMOS SOI μHPs with this operation mode provides a new option to obtain reliable low cost gas 328 

sensors with even lower power consumption and high response.  329 
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Figure captions 509 

Fig. 1. (a) Layout of the CMOS SOI μHP substrate with gold IDEs. (b) The μHP substrate after wire 510 

bonding and nanowire deposition (ZnO nanowires appear in white under optical microscope). (c) Digital 511 

microscope image of the membrane after nanowire deposition (nanowires and IDEs both appear in deep 512 

colour). 513 

Fig. 2. SEM image showing nanowires assembled between the IDEs (The right half is the magnified 514 

image of the area in the small box on the left side). 515 

Fig. 3. (a) I-V curves of the annealed device at different temperatures, (inset) room temperature (RT) I-V 516 

curve. Note the measurements were made about 1-2 minutes after the temperature adjustment, the 517 

resistance order of R(250
o
C)>R(400

o
C)>R(350

o
C)>R(300

o
C) can be retrieved. (b) Resistance variation 518 

with temperature increasing in steps (measured with probing current of 100 nA); ○: non-stabilized region, 519 

□: stabilized region. 520 

Fig. 4. NH3 sensing of the ZnO nanowire device in isothermal mode. 521 

Fig. 5. Response vs. T of ZnO nanowires to different concentration of NH3 in isothermal mode (Siso = 522 

RSA/Rgas).  523 

Fig. 6. Schematic illustrating the mechanism of NH3 sensing. 524 

Fig. 7. Temperature-pulsed and isothermal sensing of 200 ppm NH3. 525 

Fig. 8. (a) Response Spulsed,low for low end temperature of 200 and 250°C. (b) Relative response increase 526 

ΔS. The error bars represent the sample standard deviation of 3 measurements. 527 
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