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Abstract 

The strong field localization generated between closely 

placed metal particles excited by electromagnetic radiation 

induces intense forces on small polarizable objects. In this 

study we investigate the optical forces that can be generated 

in the vicinity of metal nanoparticle clusters using fully 

electrodynamic numerical simulations. The influence of the 

cluster configuration as well as of the excitation parameters 

is analyzed.   

 

1. Introduction 

Optical trapping appears to be a promising way to control 

the position of small objects with nanometric precision. In 

this sense, optical tweezers have been shown to be a useful 

tool to trap objects in the focal region of tightly focused 

beams [1]. The key issue is the gradient of electromagnetic 

field generated at the focus that induces a dipole force on 

polarizable particles. This force, proportional to the field 

intensity gradient, drives the particles towards the region 

where the field is largest. However, due to the diffraction-

limited field distribution that can be achieved with 

conventional optics, nanometric control of the position of 

small objects requires large laser power beams. Such 

requirement is not suitable for objects that might be 

damaged when exposed to strong irradiation, for instance, 

biological samples.  

In order to surpass this restriction, the use of optical 

near-fields for trapping has been proposed as alternative, 

since near-field distributions are not diffraction-limited. In 

this sense nanometric optical tweezers have been suggested 

for precise trapping of very small objects based on the 

strong field gradient generated around nanoparticle surfaces 

[2]. Using this principle, nanoscale control of objects has 

been experimentally demonstrated at nanostructured 

substrates containing metal particle pairs [3,4] enabling 

even stacking and sorting of objects [5]. Such trapping 

configurations exploit the strongly enhanced and localized 

near field generated at the gap between particles as result of 

the coupling of individual particle plasmon resonances [6].  

In the present study we analyze the potential of metal 

clusters for efficient optical trapping of small objects. In 

particular, we focus on the influence of different 

configurations of particle pairs and of the characteristics of 

the radiation exciting the cluster. The evaluation of the 

potential for trapping for each configuration is performed 

by calculating the near field distribution in the cluster 

structure. For this purpose we use fully electrodynamic 

simulations, i.e., a generalized Mie theory that can take into 

account different particle clusters and illumination 

conditions. The numerical simulations evidence how the 

trapping potential of focused beams can be boosted by the 

presence of metal nanoparticles in the focal region and aid 

in choosing the best particle configurations for optimal 

trapping. 

 

2. Theory 

A general sketch of the system investigated is shown in Fig. 

1. We assume a plane wave travelling in the –z direction 

with a wave-vector (0, 0, -k) and focused by an aplanatic 

lens with numerical aperture NA = nm· sin α where nm is the 

refractive index in the image space and α is the angular 

semi-aperture of the lens. The presence of a cluster of small 

particles and an object to be trapped in the focal region may 

significantly modify the incident electromagnetic field 

distribution. The focus of the system is located at x = y = z = 

0. In order to evaluate how an object can be trapped it is 

necessary to compute: i) the field distribution of the focused 

plane wave, ii) the electromagnetic response of the cluster 

of particles and the object to be trapped to this incident field 

distribution, and iii) the force exerted by the resulting total 

field distribution on the object to be trapped. 

 

 

Figure 1: Scheme of the system considered in the 

numerical simulations. A cluster of particles located in 

the focal region of a lens is excited by the incident 

focused beam. 
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2.1. Focal field distribution  

The distribution of light in the focal region of a high 

numerical aperture lens can be calculated using the 

Richards-Wolf theory [7]. Imposing the aplanatism 

condition, the electric field at a point r in the focal region, 

Ef, can be computed with the following diffraction integral: 
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where λ is the vacuum wavelength and Eref is the field 

refracted by the lens that can be calculated from the incident 

plane wave by geometrical optics. k is a wavector with 

module k and with direction given by (θ, ), that are the 

polar and azimuthal angles in a spherical coordinate system. 

Actually, the above diffraction integral is the angular 

spectrum representation of the focal field, i.e., the field at 

focus can be interpreted as a sum of plane waves with 

polarizations and weights determined by the propagation 

direction [8]. 

2.2. Electromagnetic response of particles  

The interaction of a cluster of arbitrary sized and shaped 

particles with electromagnetic radiation is a complex 

problem that usually can be only solved by numerical 

resolution of Maxwell equations. However, if the particles 

of the cluster and the object to be trapped are spherical, the 

solution can be found in a in a semi-analytical way using the 

generalized Mie theory [9]. Briefly, the incident, scattered 

and internal fields are expanded in vector spherical 

harmonics, that are combination of spherical harmonics and 

Bessel functions. Then, imposing boundary conditions at the 

surface of every particle, the expansion coefficients of the 

scattered and internal fields can be calculated from those of 

the incident field by solving a linear system of equations. In 

order to solve this system of equations is necessary to use 

vector addition theorems that connect vector spherical 

harmonics with different origins, i.e., particle centers. The 

dimension of the system of equations is determined by the 

number of terms in the field expansion. Therefore, the 

higher accuracy is required, the larger the size of the system 

of equations and thus, the computational load. 

The expansion coefficients for an incident plane wave 

are well known [9]. Generally speaking, for an arbitrary 

field distribution is always possible to find the expansion 

coefficients numerically [10]. Nevertheless, for a focused 

field distribution given by Eq. 1, different authors have 

proposed multipole expansions of the diffraction integral for 

linearly polarized plane waves [11] or cylindrical vector 

beams [12] illuminating the lens. These expansions can be 

easily related to the vector spherical harmonics expansion 

used in the generalized Mie theory.  We have recently used 

such expansions to analyze plasmon coupling in tightly 

focused beams [13-14].  

2.3. Calculation of forces and related parameters 

Once the electromagnetic field distribution is known, the 

time-averaged force acting over an object is given by [8]: 
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where T is the time-averaged Maxwell stress tensor and 

the integral is performed over a surface enclosing the object. 

The Maxwell stress tensor can be directly calculated from 

the electromagnetic field as: 
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where E and H stand for the electric and magnetic fields, E 

and H are their magnitudes and εm and μm the medium 

permittivity and permeability. Alternatively, a simplified 

computation framework can be used if the particle to be 

trapped is much smaller than the wavelength and the field 

acting over the particle can be locally approximated to a 

plane wave. If, in addition, the particle is non-absorbing, the 

average force can be calculated as [15]: 
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where c is the speed of light in vacuum, Iexc is the intensity 

of the electromagnetic field exciting the particle (i.e., 

without the presence of the particle) and α is the particle 

polarizability, that can be calculated from the Clausius-

Mossotti  relation: 
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with V being the particle volume and εp the particle 

permittivity. Equation 4 represents the gradient force and 

states that small particles are driven to the regions with 

largest field intensity. Around this equilibrium position, the 

restoring force exerted on the particle has a linear 

dependence with small displacements Δx, enabling to define 

the trap stiffness as: 
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In addition, an important parameter to quantify the 

stability of the optical trap to Brownian motion is the 

trapping potential, defined as the work that has to be done to 

bring a particle from a given position r0 to infinity:  
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Finally, a convenient way to quantify how effective is a 

given illumination configuration for work as an optical trap 

is the trapping efficiency, Q, defined as: 
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where Pinc is the power of the incident beam.  
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3. Results and discussion 

In the following we shall assume that the radiation 

illuminating the lens is a plane wave linearly polarized in 

the x-direction and with λ = 1064 nm. The power incising 

on the lens is set to 100 mW. The object to be trapped is a 

small sphere with radius 1 nm and refractive index 1.5. The 

medium in the image space is assumed to be water (nm = 

1.33). For the cluster of particles we consider Au with 

complex refractive index 0.26+6.97i at the radiation 

wavelength. We observed that for all the studied cases, 

there are no significant differences when the force acting on 

the glass particle is calculated either by Eq. 2 or Eq. 4.  

3.1. Focused beam trapping vs. plasmon field trapping 

First, we aim to illustrate the enhancement of trapping by a 

focused beam if the strong near field associated to the 

plasmon resonance is used. Fig.2 shows the intensity of the 

incident beam at the focal plane (left) for a lens with NA = 

1.2 and the total field when two gold particles with radius R 

= 80 nm and interparticle distance d = 20 nm are located 

over the x-axis, i.e., at x = ± 90 nm, y = z = 0. The strong 

electromagnetic coupling between the particles [13] results 

in charge accumulation in the zones where the particles are 

facing each other and the formation of a hot-spot, i.e., 

region of nanometric dimensions and a large field 

enhancement (over two orders of magnitude with respect to 

the incident field intensity for the given configuration).  

 

 
Figure 2: Intensity (a.u.) distribution at the focal plane 

for the incident focused beam (left) and with the 

presence of the Au particles (right). 

 

The large intensity gradient that can be achieved by plasmon 

coupling compared to the one that can be attained by 

conventional focusing gives place to much stronger forces, 

as shown in Table 1, where several force-related parameters 

are compared when the glass 1-nm particle is located over 

the y-axis of the focal plane. 

  

Table 1: Optical trapping parameters for 1 nm glass 

particle (see text for details on illumination) 
 

 no Au 

particles 

with Au 

particles 
 

ktrap (pN/μm) 
 

 

2.2x10-5 
 

0.32 

Qy (maximum)  
 

7.2e-9 9.7e-6 

Umin (in kBT) 

(T = 300 K) 

-2.87e-5 -0.0373 

 

 

3.2. Illumination conditions  

The influence of the degree of focusing on the trapping 

efficiency is shown in Fig.3. The configuration is the same 

as described in the previous section and the only parameter 

that is changed is the numerical aperture of the system. For a 

focused beam, weaker focusing leads to lower intensity 

gradient and, therefore, to smaller optical force. In addition, 

the position where force is maximal, i.e., where the intensity 

gradient is largest, varies with the dimension of the focal 

spot size, that increases as the NA is reduced. This is not the 

case for the plasmon-based trapping, where the position 

where the force is maximal is entirely dictated by the spatial 

extension of the hot-spot. The absolute value of the force 

also decreases when the NA of the system is lowered. Since 

the field enhancement is nearly independent of the NA, the 

force decrease can be basically associated to the lower 

incident field intensity at the focus when the NA of the 

system is reduced. Indeed, it appears that tight focusing is 

not requested to enable trapping of small particles by 

plasmon coupling, as even under standard illumination 

conditions, trapping of molecules can take place if the space 

between metal particles is in the range of few nanometers, 

leading to a field enhancement of several orders of 

magnitude [16]. 
 

 
 

Figure 3: NA dependence of the trapping efficiency 

for a 1 nm glass particle located on the y-axis of the 

focal plane without (left) and with (right) the presence 

of Au particles. 

 

We have also investigated other illumination conditions, 

such as different linearly polarized plane waves or 

cylindrical vector beams, but it appears that the largest 

gradient, and therefore, force, is always achieved through 

the hot-spot generated by a polarization parallel to the 

particle pair.  

3.3 Cluster configuration 

Finally, we study the effect or re-scaling the dimensions of 

the Au pair of particles. Thus, in addition to the above 

configuration with particle radius R = 80 nm and 

interparticle distance d = 20 nm, we consider also the case 

with R = 40 nm and d = 10 nm and R = 20 nm and d = 5 

nm, i.e., the whole system is re-scaled a factor 2 and 4. The 

wavelength dependence of the magnitude of the field 

enhancement at the focus (between the particles) is shown 

in Fig. 4. The maximum of field enhancement is associated 

to the excitation of the coupled plasmon mode, which shifts 
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to longer wavelength the larger the particle. On the other 

hand, due to radiative damping, large particles give place to 

a reduced near-field enhancement in comparison with small 

particles. In addition, decreasing the interparticle distance 

amplifies the coupling strength and gives place to larger 

field enhancements [17]. Overall, the maximum field 

enhancement at the wavelength considered in the present 

simulations is obtained with the R = 80 nm, d = 20 nm 

configuration. 

 
 

 
 

Figure 4: Electric field enhancement at the focus when 

different Au particle pairs are located over the x axis 

of the focal plane (x = ±(R + d/2), y = z = 0). 
 

 

The trapping efficiency and optical trapping potential of 

these different particle pairs is shown in Fig. 5. Although 

the field enhancement is lower for smaller particle pairs, the 

maximum force is larger since the size of the hot spot is 

reduced and therefore the intensity gradient can be larger 

than for bigger particles [18]. On the other hand, a smaller 

spatial extension of the trapping region leads to a narrower, 

but also smaller in magntiude, optical trapping potential.  

 

 
 

Figure 5: Trapping efficiency (left) and optical 

trapping potential (right) for different Au particle pairs 

configurations located over the x axis of the focal 

plane (x = ±(R + d/2), y = z = 0). 

 

4. Conclusions 

The potential of plasmon coupling for trapping of 

nanometric sized objects has been investigated by numerical 

simulations. Our approach takes into account with no 

approximation: i) the description of focused light as field 

exciting the metal nanoparticles, ii) the modification of this 

field distribution by the electromagnetic response of the 

metal nanoparticles and iii) the forces exerted over a small 

dielectric particle. It is shown that the strong field gradients 

generated by plasmon coupling and that are confined in 

nanometric-sized regions lead to optical forces that are 

several orders of magnitude larger than those that can be 

obtained in absence of the metal particles. In addition, the 

influence of the illumination conditions and of the cluster 

dimensions enables to elucidate what system configurations 

are more suitable for optimizing the trapping of nano-

objects. 
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