Differential impact of ramRA mutations on both ramA transcription and decreased antimicrobial susceptibility in *Salmonella* Typhimurium Anna Fàbrega¹, Clara Ballesté-Delpierre¹, Jordi Vila^{1,2*} ¹ ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain ² Department of Clinical Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain. * Corresponding author: Jordi Vila. Servei de Microbiologia, Centre de Diagnòstic Biomèdic, Hospital Clínic, Facultat de Medicina, Universitat de Barcelona, Villarroel 170, Barcelona 08036, Spain. Phone: +34 93 2275522. Fax: +34 93 2279372. E-mail: jvila@ub.edu. **Running title**: *ramRA* mutations and impact on MDR Key words: Salmonella, acrB, tolC, acrF, MDR

26 SYNOPSIS

Objectives: This study was focused on analysing the heterogeneity of mutations
occurring in the regulators of efflux-mediated MDR in *Salmonella* Typhimurium.
Moreover, the impact of such mutations on impairing the transcription of *ramA*, *acrB*, *tolC* and *acrF* was also assessed as was the impact on the resistance or decreased
susceptibility phenotype.

32 **Methods**: Strains were selected *in vitro* under increasing ciprofloxacin concentrations. 33 Etest and broth microdilution tests were used to determine the MICs of several 34 unrelated compounds. Screening of mutations in the quinolone target genes and the 35 MDR regulators was performed. RT-PCR analysis was used to detect the levels of 36 expression of *acrB*, *tolC*, *ompF*, *acrF*, *emrB*, *acrR*, *ramA*, *soxS* and *marA*.

37 Results: All mutant strains showed increased MICs of most of the antimicrobials tested,
38 with the exception of kanamycin. Mutations in the quinolone target genes did not occur
39 in all the mutants, which all harboured mutations in the *ramRA* regulatory region. All
40 the mutants overexpressed *ramA*, *tolC* and *acrB* (when active) whereas differential
41 results were seen for the remaining genes.

42 **Conclusions**: Mutations in the *ramRA* region related to resistance and/or decreased 43 susceptiblity to antimicrobials predominate in *Salmonella*. There is heterogeneity in the 44 type of mutations, with deletions affecting the RamR binding sites having a greater 45 impact on *ramA* expression and the MDR phenotype.

- 46
- 47
- 48
- 49

50 INTRODUCTION

The ever increasing levels of resistance to antimicrobial compounds are of great concern, particularly for pathogens of clinical relevance. *Salmonella enterica* serovar Typhimurium is a pathogen distributed worldwide which typically causes gastroenteritis in humans.¹ Fluoroquinolones and cephalosporins are the current first-line treatments, however, recent data have revealed that in particular geographic areas, such as China, high percentages of resistance to compounds such as nalidixic acid (61.9%) and cefepime, cefotaxime and ceftazidime (90%) have already been detected.²

58 Quinolone resistance has been widely studied in Enterobacteriaceae, particularly in *Escherichia coli* and *S. enterica*.³ In *E. coli* the mechanism which largely contributes 59 60 to resistance and/or decreased susceptibility to guinolones is the acquisition of mutations located in the genes encoding the two quinolone targets: DNA gyrase (gyrA 61 and gyrB) and topoisomerase IV (*parC* and *parE*).^{4,5} These mutations are usually 62 acquired in the quinolone resistance-determining regions (QRDRs) detected in each of 63 the target genes.³ On the other hand, increased drug extrusion by means of the 64 overexpression of AcrAB-TolC, the main efflux pump described in Enterobacteriaceae,³ 65 is also of great concern since it confers cross-resistance to several unrelated compounds, 66 including antimicrobial drugs.^{6,7} To a lesser extent, other efflux systems, such as AcrEF 67 68 and EmrAB, have been reported to participate in the extrusion of antimicrobial compounds.^{8,9} In Salmonella increased efflux has been described as the primary 69 mechanism in quinolone resistance acquisition.¹⁰ Alternatively, decreased production of 70 the OmpF porin has at times been related to the MDR phenotype^{11,12} despite 71 controversial data suggesting no clear role in S. enterica.¹³ 72

73 Several regulators have been reported to influence the expression of the *acrAB*74 operon in *Salmonella*. AcrR is the local repressor encoded upstream of the *acrAB* genes

75	and mutations within its coding sequence have been associated with increased
76	expression of the pump. ¹⁴ In addition, three homologous transcriptional activators,
77	RamA, SoxS and MarA, have been associated with increased <i>acrB</i> and <i>tolC</i> expression
78	levels. While clear associations have been reported for enhanced production of SoxS
79	and RamA and overexpression of <i>acrAB</i> , ^{11,15,16} only indirect results have associated
80	greater production of MarA with increased levels of resistance, supposedly mediated by
81	higher levels of AcrAB. ^{11,17} In terms of regulation, each of these three activators has its
82	own regulator: RamR, SoxR and MarR, respectively. ³ In terms of the MDR phenotype,
83	the clinical relevance of mutations located in the genes encoding for these latter
84	regulators has been clearly shown for RamR, ^{18,19} while there have been few reports for
85	mutations located in the soxRS region. ^{11,15} Concerning MarA, even though its
86	overexpression has been detected in MDR S. enterica strains, ^{8,20} the putative
87	responsible mutations in the <i>marRAB</i> region have not been mapped. Naturally-occurring
88	mutations in this region have been widely reported in E. coli, ^{21,22} whereas, to our
89	knowledge, such mutations in S. enterica have only been reported in a single study,
90	associating it with high MarA overexpression and an MDR phenotype. ¹²
91	The aim of this study was to determine the mechanisms involved in increasing
92	the MICs of different antimicrobial agents in a collection of S. Typhimurium mutants
93	selected in vitro, particularly when studying strains with low MICs of ciprofloxacin and
94	their derivative mutants selected at the initial steps of drug exposure following a
95	stepwise procedure. The mechanisms studied included target gene mutations and the
96	expression of several genes involved in decreasing the intracellular concentration of the
97	drug. Moreover, and as a novel approach, we also assessed the role and heterogeneity of
98	ramRA mutations and their impact on increasing the expression of ramA and the

- 98
- phenotype of decreased susceptibility to multiple antibiotics or MDR. 99

100 MATERIALS AND METHODS

101 **Bacterial strains and selection of resistant mutants**

102 Two S. Typhimurium clinical isolates, strains 59-wt and 60-wt, were recovered from 103 independent stool samples in the Department of Clinical Microbiology at the Hospital 104 Clinic of Barcelona, Spain. Strain 59-wt has previously been characterised as have its 105 derivative mutants displaying increasing ciprofloxacin MICs, including the highly resistant mutant 59-64.²³ As indicated, the clinical isolate 59-wt was grown at 37°C on 106 107 MacConkey agar plates in the presence of ciprofloxacin (Fluka) in a multi-step selection process with doubling concentrations of the drug.²³ Single colonies were randomly 108 109 selected at different steps and previously characterised. In the present study we 110 characterised additional randomly-selected colonies during the process (59-mut1, 59-111 mut2 and 59-mut3) to assess the occurrence of heterogeneity in the mechanisms of resistance. Likewise, strain 60-wt was similarly treated and exposed to increasing 112 ciprofloxacin concentrations and two different mutants were randomly selected (60-113 114 mut1 and 60-mut2).

115

116 Susceptibility testing

The MICs of several quinolones and unrelated antimicrobial compounds were determined by Etest (AB Biodisk) according to the manufacturer's recommendations and interpreted according to CLSI guidelines.²⁴ The broth microdilution method was used to evaluate the MICs of ciprofloxacin, norfloxacin and nalidixic acid when maximum Etest values were reached. The compounds tested were: ciprofloxacin, norfloxacin, nalidixic acid, chloramphenicol, tetracycline, erythromycin, amoxicillin, ceftriaxone and cefoxitin.

125 Detection of mutations within the QRDRs and regulatory loci

Mutations acquired in the QRDRs of the *gyrA*, *gyrB*, *parC*, and *parE* genes, as well as in the MDR regulatory loci *soxRS*, *marRAB*, *acrR* and *ramR* were screened by PCR amplification as described previously.²⁵ Amplicons were purified and sent to Beckman Coulter Genomics (Essex, UK) for sequencing reactions. Detection of mutations was carried out using the BioEdit[®] software (Ibis Biosciences, Carlsbad, CA) by comparison with the genome of *S*. Typhimurium LT2 as the reference strain (RefSeq NC_003197.1).

133

134 RNA extraction and real time PCR

Bacterial pellets were obtained as described previously.²⁵ Briefly, strains were grown in LB at 37°C with shaking to reach the exponential phase ($OD_{600}=0.6$). Four mL of bacterial cells were treated with 8 mL of RNA Protect Bacteria Reagent (Qiagen) and subsequently incubated with Tris-EDTA (TE) buffer supplemented with lysozyme. RNA extractions were obtained using the Maxwell ® 16 Research Instrument (Promega) and the Maxwell® 16 LEV simplyRNA Blood Kit (Promega) following the manufacturer's recommendations. Five independent RNA extractions were made.

142 The *acrB*, *tolC*, *ompF*, *acrF*, *emrB*, *ramA*, *marA*, *soxS* and *acrR* genes were 143 tested for RT-PCR analysis following previously described conditions.²⁶ The 16S rRNA 144 gene was used as an internal control for normalisation, and susceptible strains 59-wt and 145 60-wt were the reference strains for their respective derived mutants. The $2^{-\Delta\Delta CT}$ method 146 was used for relative gene expression calculations.²⁷ Five independent assays were 147 performed and each RNA sample was tested in triplicate. The primers used are reported 148 in Table 1. Mean values and standard deviation are detailed in Table 2.

150 **RESULTS AND DISCUSSION**

151 *Quinolone resistance and the MDR phenotype*

152 Three and two derivative mutants were selected from the quinolone-susceptible clinical 153 isolates 59-wt and 60-wt, respectively. Susceptibility testing to several unrelated 154 compounds was used to determine the acquisition of the quinolone resistance and MDR 155 phenotypes (Table 3). The term MDR has been defined as resistance to one agent in three or more antimicrobial categories,²⁸ or to four or more antimicrobials in the 156 particular case of nontyphoidal Salmonella.²⁹ In the present study we used instead the 157 158 term decreased susceptibility to multiple antibiotics when increased MICs to more than 159 4 antimicrobial compounds were seen even though the resistance breakpoints were not reached. Strain 59-64, already characterised in a previous study,²³ was also included in 160 161 the present work for comparison with the mutants.

162 The results showed that in comparison with their wild-type strain, all selected 163 mutants had increased MICs (1.5- to >8-fold) to all the drugs tested, except for 164 kanamycin, for which no increase was recorded. Only 59-wt derivative mutants showed 165 the acquisition of QRDR mutations (Table 4). Strains 59-mut1 and 59-mut2 showed a 166 similar genetic background in terms of target gene mutations. However, higher MIC 167 values were seen for 59-mut2 concerning all the drugs (except for amoxicillin and 168 chloramphenicol, which had already shown maximum Etest values in 59-wt, and 169 tetracycline). Likewise, on comparing strains 60-mut1 and 60-mut2 a similar conclusion 170 was obtained, with higher MIC results seen for 60-mut2 despite having background similarity. In accordance with the fact that strains 59-mut3 and 59-64 were selected at 171 higher ciprofloxacin concentrations, these strains showed the highest MICs, mostly 172 173 concerning quinolones, being maximal for strain 59-64.

174 Taking into account the increased MICs of most of these compounds in all the 175 mutants, and the fact that increased efflux confers a cross-resistance phenotype by means of increased AcrAB or even a hitherto uncharacterised efflux pump,^{6,23} enhanced 176 extrusion activity was the most likely mechanism underlying this phenotype. Moreover, 177 178 the results obtained from 60-wt and its derivative mutants strengthen the idea that efflux 179 is selected at primary stages of the process of quinolone resistance acquisition as suggested previously,^{10,25} and this mechanism is selected even before target gene 180 181 mutations. It should be noted that mutants selected in a single step-selection process, 182 usually performed at concentrations higher than the initial MIC, may follow a different 183 pattern of acquisition of resistance mechanisms.

184

185 Expression of structural genes involved in MDR

186 Gene expression analysis was performed to determine the expression patterns of 187 genes related to bacterial efflux and permeability. The results were interpreted after 188 comparison of the expression levels of each clinical isolate with their respective mutant 189 derivatives. The genes studied were acrB, tolC, ompF, acrF and emrB (Figure 1)(Table 190 2). Overexpression of the AcrAB-TolC efflux pump has been reported as the most relevant mechanism in terms of efflux.³ In the present study *acrB* was only analysed in 191 192 60-wt and its derivates, which all overexpressed this gene (5.2- to 9.5-fold), since it was reported that 59-wt has a mutation inactivating the *acrAB* operon.²³ The *tolC* gene was 193 194 found to be consistently overexpressed in all the mutants (>2.3-fold), particularly for 195 strains 59-mut2 and 60-mut2 (5.4- and 6.2-fold, respectively). On the contrary, *ompF* 196 always showed decreased expression with the strongest results being seen in strains 59-64 (-3.3-fold) and 60-mut2 (-2.4-fold). With these results we suggest that AcrAB-TolC 197 was involved in the phenotype of decreased susceptibility to multiple antibiotics in the 198

case of 60-wt derivatives whereas an unknown efflux system, likely acting in
conjunction with ToIC, participated in the case of 59-wt derivatives.

Next, we assessed other efflux-related genes, such as *acrF* and *emrB*, (Figure 1)(Table 2) which may play a secondary role in antibiotic resistance.^{8,9} Our results showed that only two strains clearly overexpressed *acrF* [59-mut2 (6-fold) and 60-mut2 (4.9-fold)] whereas *emrB* showed a slightly decreased expression in all the mutants (-1.2- to -1.9-fold). Thus, we can only suggest a role in increasing the MICs mentioned for the AcrEF efflux system in these two particular mutants, one of which is also an AcrAB-overproducer (60-mut2).

208

209 Expression of the MDR regulators: the key role of ramA

210 In addition to the analysis of these structural genes, we also studied the levels of 211 expression of the AcrAB regulators: *acrR*, *ramA*, *soxS* and *marA* (Figure 1)(Table 2). 212 We could not find a clear interpretation for *acrR* expression. In contrast, *ramA* was 213 overexpressed in all the mutants thereby suggesting this regulator as the cause of the 214 increased MICs in both the mutants overexpressing *acrB* and those overexpressing an 215 unknown efflux system. Similar results have also highlighted the greater importance and prevalence of increased RamA over that of the other regulators.^{16,30} Maximal ramA 216 217 expression levels were seen for 59-mut2 and 60-mut2 (66- and 74.2-fold, respectively) 218 above the levels detected for the remaining mutants (13.4- to 19.6-fold). In line with 219 these results, these two strains also showed higher MICs and *acrB* and *tolC* expression 220 values in comparison with their closely related mutants 59-mut1 and 60-mut1, 221 respectively. In addition, as mentioned above, 59-mut2 and 60-mut2 were also reported to clearly overexpress *acrF*. This latter association between high *ramA* expression (>60-222

fold in the present study) and *tolC* and *acrF* overexpression agrees with a previously reported study.³¹

225 The *soxS* expression values detected in the present study were <2-fold higher in 226 most of the mutants *versus* the expression levels seen in the two clinical isolates (Figure 227 1). Only two mutants, strains 59-64 and 60-mut2 showed an overexpression of >4-fold. 228 However, it was not possible to consistently associate this trait with higher expression 229 values of *ramA* or *acrF* in both mutants. On the contrary, these two strains did show the 230 minimum levels of *ompF* expression (-3.3- and -2.2-fold, respectively). Similarly, *marA* 231 transcription also showed \leq 2-fold increased expression in three mutant strains: 59-mut1, 232 59-mut3 and 60-mut1. On the contrary, the highest levels were seen in 59-mut2 (4.3-233 fold), 59-64 (3.7-fold) and 60-mut2 (3.6-fold).

234 To understand our results it is worth mentioning that the RamA binding sites have already been reported in *Salmonella* concerning the *acrAB* and *tolC* promoters.³² 235 236 The 20-bp sequences recognised by this regulator resemble those initially reported to be present in all members of the marA/soxS/rob regulon in E. coli.³³ It has been described 237 238 that most of the residues of the two helix-turn-helix motifs (important for DNA 239 sequence recognition) of MarA from E. coli are conserved in RamA from Salmonella enterica serovar Paratyphi B.³⁴ Moreover, it has previously been reported that the 240 marRAB promotor contains its own marbox sequence.³³ In agreement with this, RamA 241 from S. Paratyphi B has been shown to bind the MarA operator of E.coli.³⁴ Thus, the 242 binding sites characterised for MarA and SoxS in E. coli, equally termed marbox or 243 soxbox, are similar to the already mentioned rambox in Salmonella.^{31,32} Therefore, 244 245 increased levels of RamA (>60-fold) and/or SoxS (>4-fold) could bind to the rambox/marbox located in the marRAB promoter and activate marA transcription, hence 246 explaining the increased levels of marA expression observed for strains 59-mut2 247

Journal of Antimicrobial Chemotherapy: under review

- [RamA-overproducer (>60-fold)], 59-64 [SoxS-overproducer (>4-fold)] and 60-mut2
 [RamA-overproducer (>60-fold) and SoxS-overproducer (>4-fold)]. Nonetheless, lower *ramA* overexpression values (13- to 20-fold) would not have the same effect, thereby
 reinforcing the idea of an activator concentration-dependent response.^{31,35}
- 252

253 Unravelling the mutations leading to the phenotype of decreased susceptibility to 254 multiple antibiotics

255 In order to determine the mutations underlying the resistance phenotypes, sequencing 256 and detection of mutations was performed in all the strains for all known regulators of 257 MDR (acrRA, ramRA, soxRS, marRAB and acrSE). The results revealed the acquisition 258 of mutations in the ramRA loci for all the mutants (Table 4). Mutations were located 259 within the ramR coding sequence, either leading to a single amino acid substitution 260 (Gln-19 \rightarrow Pro, strain 60-mut1) or even deletions of 44 and 6 nucleotides (strains 59-261 mut1 and 59-mut3, respectively). Surprisingly, the two strains (59-mut2 and 60-mut2) 262 with the highest *ramA* overexpression values harboured a similar genotype: a 6- and 16-263 nucleotide deletions, respectively, in the *ramA* promoter. Lastly, and as previously reported²³ strain 59-64 showed a single-nucleotide change also located in the ramA 264 265 promoter.

Previous reports have revealed that mutations or gene interruptions can be either acquired within *ramR* or in the *ramA* promoter.^{11,16,30} However, no association has ever been made between the type of mutation and transcription levels of *ramA*. The results observed in the present study point out that severe nucleotide deletions located in the *ramA* promoter have a higher impact on increasing the expression of this regulator, whereas mutations within *ramR* or single nucleotide changes in the *ramA* promoter have a lesser effect. We performed an exhaustive analysis of the literature looking for studies

273	which determined both the ramA transcription levels and ramRA mutations in strains
274	with resistance or decreased susceptibility to fluoroquinolones. Studies conducted in
275	serovars Typhimurium, ^{36,37} Enteritidis, ¹¹ Kentucky ³⁸ and other serovars ³⁰ were found to
276	report similar results (Table 4). In order to understand this situation, it is necessary to
277	note that RamR has been reported to bind as a homodimer to two RamR binding sites
278	located in the <i>ramA</i> promoter (Figure 2). ³⁷ Thus, taking into account all this information
279	we hypothesize that important deletions occurring in these binding sites seriously impair
280	the RamR repressive activity by preventing RamR binding and lead to high levels of
281	<i>ramA</i> expression (>60-fold). On the contrary, mutations or deletions occurring in RamR
282	or single nucleotide modifications affecting one binding site do not seem to abolish
283	repression to the same extent and lead to moderate levels of <i>ramA</i> transcription (<~40-
284	fold). This latter situation would be supported by the capacity of the mutated form of
285	RamR to partially preserve its repressive activity or by the existence of other regulators
286	capable of binding to the ramA promoter even in the absence of a functional RamR
287	protein. Nonetheless, to our knowledge two exceptions have been reported, one S.
288	Kentucky strain ³⁸ and one S. Paratyphi B mutant (Table4). ³⁰ The former situation might
289	be explained by a large deletion detected at the very beginning of the repressor
290	(affecting the protein sequence from the amino acid at position 14), whereas no clear
291	explanation could justify the latter situation. Therefore, in order to elucidate the role of
292	these mutations and strengthen or not our hypothesis, a larger number of strains needs to
293	be analysed in further studies.
294	In no strain did we find any mutation in any of the other regulatory sequences
295	analysed in the present study. Consequently, we are unable to explain the increased <i>soxS</i>
296	transcription reported in 59-64 and 60-mut2. Concerning <i>acrF</i> overexpression, previous

- 296
- results have associated it with mutations within the acrS gene or in the acrEF 297

could explain our findings. Instead, and as previously mentioned and reinforced by our results, overexpression of this efflux component is related to the levels of <i>ramA</i> transcription. ³¹ High levels of <i>ramA</i> expression trigger <i>acrF</i> overexpression whereas intermediate levels do not. In line with these results, a previous study has also associated nucleotide deletions in the <i>ramA</i> promoter with <i>acrEF</i> overexpression. ³⁶ In view of these findings, the regulatory network that controls the expression of genes involved in the phenotype of decreased susceptibility to multiple antibiotics or MDR still needs further research to completely understand the bacterial response for survival under antimicrobial exposure. Nonetheless, we must keep in mind that our observations have arisen from mutants selected in a stepwise process which may harbour additional mutations with unknown influence. Additional experiments are required in order to validate these results. Conclusions The results of our study indicate that RamA overexpression leads to the phenotype of decreased susceptibility to multiple antibiotics by using two different efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence of <i>ramRA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However, heterogeneity was observed in the types of mutations acquired, which may be associated with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription levels, a trait which may account for the highest expression levels of <i>acrB</i> , <i>tolC</i> , <i>marA</i>	298	promoter. ⁹ However, in the present study no mutation in the <i>acrSE</i> regulatory region
300results, overexpression of this efflux component is related to the levels of <i>ramA</i> 301transcription. ³¹ High levels of <i>ramA</i> expression trigger <i>acrF</i> overexpression whereas302intermediate levels do not. In line with these results, a previous study has also303associated nucleotide deletions in the <i>ramA</i> promoter with <i>acrEF</i> overexpression. ³⁶ In304view of these findings, the regulatory network that controls the expression of genes305involved in the phenotype of decreased susceptibility to multiple antibiotics or MDR306still needs further research to completely understand the bacterial response for survival307under antimicrobial exposure. Nonetheless, we must keep in mind that our observations308have arisen from mutants selected in a stepwise process which may harbour additional309mutations with unknown influence. Additional experiments are required in order to310validate these results.311312Conclusions313The results of our study indicate that RamA overexpression leads to the314phenotype of decreased susceptibility to multiple antibiotics by using two different315efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto316uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence317of <i>ramA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However,318heterogeneity was observed in the types of mutations acquired, which may be associated319with different levels of <i>ramA</i> transcription. Large deletions aff	299	could explain our findings. Instead, and as previously mentioned and reinforced by our
301transcription.31High levels of <i>ramA</i> expression trigger <i>acrF</i> overexpression whereas302intermediate levels do not. In line with these results, a previous study has also303associated nucleotide deletions in the <i>ramA</i> promoter with <i>acrEF</i> overexpression.36304view of these findings, the regulatory network that controls the expression of genes305involved in the phenotype of decreased susceptibility to multiple antibiotics or MDR306still needs further research to completely understand the bacterial response for survival307under antimicrobial exposure. Nonetheless, we must keep in mind that our observations308have arisen from mutants selected in a stepwise process which may harbour additional309mutations with unknown influence. Additional experiments are required in order to301validate these results.311 Conclusions 312The results of our study indicate that RamA overexpression leads to the313phenotype of decreased susceptibility to multiple antibiotics by using two different314efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto315uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence316of <i>ramA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However,318heterogeneity was observed in the types of mutations acquired, which may be associated319with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding320sites in the <i>ramA</i> promoter were observed in strains with321he	300	results, overexpression of this efflux component is related to the levels of ramA
302intermediate levels do not. In line with these results, a previous study has also303associated nucleotide deletions in the <i>ramA</i> promoter with <i>acrEF</i> overexpression. 36 In304view of these findings, the regulatory network that controls the expression of genes305involved in the phenotype of decreased susceptibility to multiple antibiotics or MDR306still needs further research to completely understand the bacterial response for survival307under antimicrobial exposure. Nonetheless, we must keep in mind that our observations308have arisen from mutants selected in a stepwise process which may harbour additional309mutations with unknown influence. Additional experiments are required in order to301validate these results.302The results of our study indicate that RamA overexpression leads to the303phenotype of decreased susceptibility to multiple antibiotics by using two different308efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto309uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence309of <i>ramAA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However,309heterogeneity was observed in the types of mutations acquired, which may be associated309with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding300sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription301levels, a trait which may account for the highest expression levels of <i>acrB, tolC, marA</i>	301	transcription. ³¹ High levels of <i>ramA</i> expression trigger <i>acrF</i> overexpression whereas
303associated nucleotide deletions in the <i>ramA</i> promoter with <i>acrEF</i> overexpression. ³⁶ In304view of these findings, the regulatory network that controls the expression of genes305involved in the phenotype of decreased susceptibility to multiple antibiotics or MDR306still needs further research to completely understand the bacterial response for survival307under antimicrobial exposure. Nonetheless, we must keep in mind that our observations308have arisen from mutants selected in a stepwise process which may harbour additional309mutations with unknown influence. Additional experiments are required in order to310validate these results.311312312Conclusions313The results of our study indicate that RamA overexpression leads to the314phenotype of decreased susceptibility to multiple antibiotics by using two different315efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto316uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence317of <i>ramRA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However,318heterogeneity was observed in the types of mutations acquired, which may be associated319with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding320sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription321levels, a trait which may account for the highest expression levels of <i>acrB, tolC, marA</i>	302	intermediate levels do not. In line with these results, a previous study has also
 view of these findings, the regulatory network that controls the expression of genes involved in the phenotype of decreased susceptibility to multiple antibiotics or MDR still needs further research to completely understand the bacterial response for survival under antimicrobial exposure. Nonetheless, we must keep in mind that our observations have arisen from mutants selected in a stepwise process which may harbour additional mutations with unknown influence. Additional experiments are required in order to validate these results. <i>Conclusions</i> The results of our study indicate that RamA overexpression leads to the phenotype of decreased susceptibility to multiple antibiotics by using two different efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence of <i>ramRA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However, heterogeneity was observed in the types of mutations acquired, which may be associated with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription levels, a trait which may account for the highest expression levels of <i>acrB</i>, <i>tolC</i>, <i>marA</i> 	303	associated nucleotide deletions in the ramA promoter with acrEF overexpression. ³⁶ In
 involved in the phenotype of decreased susceptibility to multiple antibioties or MDR still needs further research to completely understand the bacterial response for survival under antimicrobial exposure. Nonetheless, we must keep in mind that our observations have arisen from mutants selected in a stepwise process which may harbour additional mutations with unknown influence. Additional experiments are required in order to validate these results. <i>Conclusions</i> The results of our study indicate that RamA overexpression leads to the phenotype of decreased susceptibility to multiple antibiotics by using two different efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence of <i>ramRA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However, heterogeneity was observed in the types of mutations acquired, which may be associated with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription levels, a trait which may account for the highest expression levels of <i>acrB, tolC, marA</i> 	304	view of these findings, the regulatory network that controls the expression of genes
306still needs further research to completely understand the bacterial response for survival307under antimicrobial exposure. Nonetheless, we must keep in mind that our observations308have arisen from mutants selected in a stepwise process which may harbour additional309mutations with unknown influence. Additional experiments are required in order to310validate these results.311 Conclusions 312The results of our study indicate that RamA overexpression leads to the314phenotype of decreased susceptibility to multiple antibiotics by using two different315efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto316uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence317of ramRA mutations versus other acrB regulators in the acquisition of MDR. However,318heterogeneity was observed in the types of mutations acquired, which may be associated319with different levels of ramA transcription. Large deletions affecting the RamR binding320sites in the ramA promoter were observed in strains with higher ramA transcription321levels, a trait which may account for the highest expression levels of acrB, tolC, marA	305	involved in the phenotype of decreased susceptibility to multiple antibiotics or MDR
 under antimicrobial exposure. Nonetheless, we must keep in mind that our observations have arisen from mutants selected in a stepwise process which may harbour additional mutations with unknown influence. Additional experiments are required in order to validate these results. <i>Conclusions</i> The results of our study indicate that RamA overexpression leads to the phenotype of decreased susceptibility to multiple antibiotics by using two different efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence of <i>ramRA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However, heterogeneity was observed in the types of mutations acquired, which may be associated with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription levels, a trait which may account for the highest expression levels of <i>acrB</i>, <i>tolC</i>, <i>marA</i> 	306	still needs further research to completely understand the bacterial response for survival
308have arisen from mutants selected in a stepwise process which may harbour additional309mutations with unknown influence. Additional experiments are required in order to310validate these results.311 <i>Conclusions</i> 313The results of our study indicate that RamA overexpression leads to the314phenotype of decreased susceptibility to multiple antibiotics by using two different315efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto316uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence317of <i>ramRA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However,318heterogeneity was observed in the types of mutations acquired, which may be associated319with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding320sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription321levels, a trait which may account for the highest expression levels of <i>acrB, tolC, marA</i>	307	under antimicrobial exposure. Nonetheless, we must keep in mind that our observations
309mutations with unknown influence. Additional experiments are required in order to validate these results.311312Conclusions313The results of our study indicate that RamA overexpression leads to the phenotype of decreased susceptibility to multiple antibiotics by using two different efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence of ramRA mutations versus other acrB regulators in the acquisition of MDR. However, heterogeneity was observed in the types of mutations acquired, which may be associated with different levels of ramA transcription. Large deletions affecting the RamR binding sites in the ramA promoter were observed in strains with higher ramA transcription levels, a trait which may account for the highest expression levels of acrB, tolC, marA	308	have arisen from mutants selected in a stepwise process which may harbour additional
 validate these results. <i>Conclusions</i> The results of our study indicate that RamA overexpression leads to the phenotype of decreased susceptibility to multiple antibiotics by using two different efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence of <i>ramRA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However, heterogeneity was observed in the types of mutations acquired, which may be associated with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription levels, a trait which may account for the highest expression levels of <i>acrB</i>, <i>tolC</i>, <i>marA</i> 	309	mutations with unknown influence. Additional experiments are required in order to
311312Conclusions313The results of our study indicate that RamA overexpression leads to the314phenotype of decreased susceptibility to multiple antibiotics by using two different315efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto316uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence317of ramRA mutations versus other acrB regulators in the acquisition of MDR. However,318heterogeneity was observed in the types of mutations acquired, which may be associated319with different levels of ramA transcription. Large deletions affecting the RamR binding320sites in the ramA promoter were observed in strains with higher ramA transcription321levels, a trait which may account for the highest expression levels of acrB, tolC, marA	310	validate these results.
312Conclusions313The results of our study indicate that RamA overexpression leads to the314phenotype of decreased susceptibility to multiple antibiotics by using two different315efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto316uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence317of ramRA mutations versus other acrB regulators in the acquisition of MDR. However,318heterogeneity was observed in the types of mutations acquired, which may be associated319with different levels of ramA transcription. Large deletions affecting the RamR binding320sites in the ramA promoter were observed in strains with higher ramA transcription321levels, a trait which may account for the highest expression levels of acrB, tolC, marA	311	
The results of our study indicate that RamA overexpression leads to the phenotype of decreased susceptibility to multiple antibiotics by using two different efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence of <i>ramRA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However, heterogeneity was observed in the types of mutations acquired, which may be associated with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription levels, a trait which may account for the highest expression levels of <i>acrB</i> , <i>tolC</i> , <i>marA</i>	312	Conclusions
phenotype of decreased susceptibility to multiple antibiotics by using two different efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence of <i>ramRA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However, heterogeneity was observed in the types of mutations acquired, which may be associated with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription levels, a trait which may account for the highest expression levels of <i>acrB</i> , <i>tolC</i> , <i>marA</i>	313	The results of our study indicate that RamA overexpression leads to the
efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence of <i>ramRA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However, heterogeneity was observed in the types of mutations acquired, which may be associated with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription levels, a trait which may account for the highest expression levels of <i>acrB</i> , <i>tolC</i> , <i>marA</i>	314	phenotype of decreased susceptibility to multiple antibiotics by using two different
uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence of <i>ramRA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However, heterogeneity was observed in the types of mutations acquired, which may be associated with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription levels, a trait which may account for the highest expression levels of <i>acrB</i> , <i>tolC</i> , <i>marA</i>	315	efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto
of <i>ramRA</i> mutations versus other <i>acrB</i> regulators in the acquisition of MDR. However, heterogeneity was observed in the types of mutations acquired, which may be associated with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription levels, a trait which may account for the highest expression levels of <i>acrB</i> , <i>tolC</i> , <i>marA</i>	316	uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence
 heterogeneity was observed in the types of mutations acquired, which may be associated with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription levels, a trait which may account for the highest expression levels of <i>acrB</i>, <i>tolC</i>, <i>marA</i> 	317	of ramRA mutations versus other acrB regulators in the acquisition of MDR. However,
 with different levels of <i>ramA</i> transcription. Large deletions affecting the RamR binding sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription levels, a trait which may account for the highest expression levels of <i>acrB</i>, <i>tolC</i>, <i>marA</i> 	318	heterogeneity was observed in the types of mutations acquired, which may be associated
 sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription levels, a trait which may account for the highest expression levels of <i>acrB</i>, <i>tolC</i>, <i>marA</i> 	319	with different levels of ramA transcription. Large deletions affecting the RamR binding
321 levels, a trait which may account for the highest expression levels of <i>acrB</i> , <i>tolC</i> , <i>marA</i>	320	sites in the <i>ramA</i> promoter were observed in strains with higher <i>ramA</i> transcription
	321	levels, a trait which may account for the highest expression levels of <i>acrB</i> , <i>tolC</i> , <i>marA</i>

- 322 and *acrF*, hence related to a major contribution to the phenotype of decreased 323 susceptibility to multiple antibiotics.
- 324
- 325

ACKNOWLEDGEMENTS 326

327 We are grateful to Lee Rosner for his general revision of the manuscript. AF is 328 sponsored by the Barcelona Institute for Global Health (ISGlobal).

329

330 FUNDING

This study was supported by the Ministerio de Economía y Competitividad, 331 332 Instituto de Salud Carlos III, co-financed by the European Regional Development Fund 333 (ERDF) "A Way to Achieve Europe," the Spanish Network for Research in Infectious 334 Diseases (REIPI RD12/0015), and the Spanish Ministry of Health (grant number FIS 335 PI11/02024). This study was also supported by grant 2014SGR0653 from the 336 Departament d'Universitats, Recerca i Societat de la Informació, of the Generalitat de .itia. 337 Catalunya and by funding from the Innovative Medicines Initiative (Translocation, 338 contract IMI-JU-6-2012-115525).

339

340 TRANSPARENCY DECLARATION

- 341 The authors declare no conflicts of interest.
- 342

344 **REFERENCES**

345 346 347 1.	Fàbrega A, Vila J. Salmonella enterica serovar Typhimurium skills to succeed in the best: virulence and regulation. <i>Clin Migraphiel Rev</i> 2013: 26 : 308-41
349 2. 350 351	Liang Z, Ke B, Deng X <i>et al.</i> Serotypes, seasonal trends, and antibiotic resistance of non-typhoidal <i>Salmonella</i> from human patients in Guangdong Province, China, 2009-2012. <i>BMC Infect Dis</i> 2015; 15 : 53.
352 3. 353	Fàbrega A, Madurga S, Giralt E <i>et al</i> . Mechanism of action of and resistance to quinolones. <i>Microb Biotechnol</i> 2009; 2 : 40-61.
354 4. 355 356	Heisig P. Genetic evidence for a role of <i>parC</i> mutations in development of high- level fluoroquinolone resistance in <i>Escherichia coli</i> . <i>Antimicrob Agents</i> <i>Chemother</i> 1996; 40 : 879-85.
357 5. 358 359	Vila J, Ruiz J, Goni P <i>et al.</i> Detection of mutations in <i>parC</i> in quinolone- resistant clinical isolates of <i>Escherichia coli</i> . <i>Antimicrob Agents Chemother</i> 1996; 40 : 491-3.
360 6. 361 362 363 363 364 364	Cohen SP, McMurry LM, Hooper DC <i>et al.</i> Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) <i>Escherichia coli</i> selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. <i>Antimicrob Agents Chemother</i> 1989; 33 : 1318-25.
365 7. 366	Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter genes in <i>Escherichia coli</i> . <i>J Bacteriol</i> 2001; 183 : 5803-12.
367 8. 368 369 370 370	Chen S, Cui S, McDermott PF <i>et al</i> . Contribution of target gene mutations and efflux to decreased susceptibility of <i>Salmonella enterica</i> serovar Typhimurium to fluoroquinolones and other antimicrobials. <i>Antimicrob Agents Chemother</i> 2007; 51 : 535-42.
371 9. 372 373 374 9.	Olliver A, Valle M, Chaslus-Dancla E <i>et al.</i> Overexpression of the multidrug efflux operon <i>acrEF</i> by insertional activation with <i>IS1</i> or <i>IS10</i> elements in <i>Salmonella enterica</i> serovar typhimurium DT204 <i>acrB</i> mutants selected with fluoroquinolones. <i>Antimicrob Agents Chemother</i> 2005; 49 : 289-301.
375 10. 376 377	Giraud E, Cloeckaert A, Kerboeuf D <i>et al</i> . Evidence for active efflux as the primary mechanism of resistance to ciprofloxacin in <i>Salmonella enterica</i> serovar typhimurium. <i>Antimicrob Agents Chemother</i> 2000; 44 : 1223-8.
378 11. 379 380 381	O'Regan E, Quinn T, Pages JM <i>et al.</i> Multiple regulatory pathways associated with high-level ciprofloxacin and multidrug resistance in <i>Salmonella enterica</i> serovar Enteritidis: involvement of RamA and other global regulators. <i>Antimicrob Agents Chemother</i> 2009; 53 : 1080-7.

382 383 384	12.	Balleste-Delpierre C, Fabrega A, Ferrer-Navarro M <i>et al</i> . Attenuation of <i>in vitro</i> host-pathogen interactions in quinolone-resistant <i>Salmonella</i> Typhi mutants. <i>J Antimicrob Chemother</i> 2015. Epub ahead of print.
385 386 387	13.	Piddock LJV, Griggs DJ, Hall MC <i>et al.</i> Ciprofloxacin resistance in clinical isolates of <i>Salmonella typhimurium</i> obtained from two patients. <i>Antimicrob Agents Chemother</i> 1993; 37 : 662-6.
388 389 390 391	14.	Olliver A, Valle M, Chaslus-Dancla E <i>et al</i> . Role of an <i>acrR</i> mutation in multidrug resistance of in vitro-selected fluoroquinolone-resistant mutants of <i>Salmonella enterica</i> serovar Typhimurium. <i>FEMS Microbiol Lett</i> 2004; 238 : 267-72.
392 393 394	15.	Koutsolioutsou A, Martins EA, White DG <i>et al.</i> A <i>soxRS</i> -constitutive mutation contributing to antibiotic resistance in a clinical isolate of <i>Salmonella enterica</i> (Serovar typhimurium). <i>Antimicrob Agents Chemother</i> 2001; 45 : 38-43.
395 396 397	16.	Abouzeed YM, Baucheron S, Cloeckaert A. <i>ramR</i> mutations involved in efflux- mediated multidrug resistance in <i>Salmonella enterica</i> serovar Typhimurium. <i>Antimicrob Agents Chemother</i> 2008; 52 : 2428-34.
398 399 400	17.	Sulavik MC, Dazer M, Miller PF. The <i>Salmonella typhimurium</i> mar locus: molecular and genetic analyses and assessment of its role in virulence. <i>J Bacteriol</i> 1997; 179 : 1857-66.
401 402 403 404	18.	Giraud E, Baucheron S, Virlogeux-Payant I <i>et al.</i> Effects of natural mutations in the <i>ramRA</i> locus on invasiveness of epidemic fluoroquinolone-resistant <i>Salmonella enterica</i> serovar Typhimurium isolates. <i>J Infect Dis</i> 2013; 207 : 794-802.
405 406 407	19.	Ricci V, Tzakas P, Buckley A <i>et al.</i> Ciprofloxacin-resistant <i>Salmonella enterica</i> serovar Typhimurium strains are difficult to select in the absence of AcrB and TolC. <i>Antimicrob Agents Chemother</i> 2006; 50 : 38-42.
408 409 410	20.	Tibbetts RJ, Lin TL, Wu CC. Phenotypic evidence for inducible multiple antimicrobial resistance in <i>Salmonella</i> choleraesuis. <i>FEMS Microbiol Lett</i> 2003; 218 : 333-8.
411 412 413	21.	Oethinger M, Podglajen I, Kern WV <i>et al.</i> Overexpression of the <i>marA</i> or <i>soxS</i> regulatory gene in clinical topoisomerase mutants of <i>Escherichia coli</i> . <i>Antimicrob Agents Chemother</i> 1998; 42 : 2089-94.
414 415 416	22.	Alekshun MN, Levy SB. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. <i>Antimicrob Agents Chemother</i> 1997; 41 : 2067-75.
417 418 419	23.	Fàbrega A, Soto SM, Ballesté-Delpierre C <i>et al</i> . Impact of quinolone-resistance acquisition on biofilm production and fitness in <i>Salmonella enterica</i> . <i>J Antimicrob Chemother</i> 2014; 69 : 1815-24.

420 421 422	24.	Clinical and Laboratory Standards Institute. <i>Performance Standards for</i> <i>Antimicrobial Susceptibility Testing: Twenty-third Informational Supplement</i> <i>M100-S23</i> . CLSI, Wayne, PA, USA, 2013.
423 424 425	25.	Fàbrega A, du Merle L, Le Bouguenec C <i>et al.</i> Repression of invasion genes and decreased invasion in a high-level fluoroquinolone-resistant <i>Salmonella</i> Typhimurium mutant. <i>PLoS One</i> 2009; 4 : e8029.
426 427 428	26.	Balleste-Delpierre C, Sole M, Domenech O <i>et al</i> . Molecular study of quinolone resistance mechanisms and clonal relationship of <i>Salmonella enterica</i> clinical isolates. <i>Int J Antimicrob Agents</i> 2014; 43 : 121-5.
429 430	27.	Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real- time quantitative PCR and the $2(^{-\Delta\Delta C}T)$ method. <i>Methods</i> 2001; 25 : 402-8.
431 432 433 434	28.	Magiorakos AP, Srinivasan A, Carey RB <i>et al.</i> Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. <i>Clin Microbiol Infect</i> 2012; 18 : 268-81.
435 436	29.	Parry CM, Threlfall EJ. Antimicrobial resistance in typhoidal and nontyphoidal salmonellae. <i>Curr Opin Infect Dis</i> 2008; 21 : 531-8.
437 438 439 440	30.	Kehrenberg C, Cloeckaert A, Klein G <i>et al.</i> Decreased fluoroquinolone susceptibility in mutants of <i>Salmonella</i> serovars other than Typhimurium: detection of novel mutations involved in modulated expression of <i>ramA</i> and <i>soxS. J Antimicrob Chemother</i> 2009; 64 : 1175-80.
441 442 443	31.	Bailey AM, Ivens A, Kingsley R <i>et al.</i> RamA, a member of the AraC/XylS family, influences both virulence and efflux in <i>Salmonella enterica</i> serovar Typhimurium. <i>J Bacteriol</i> 2010; 192 : 1607-16.
444 445 446	32.	Nikaido E, Yamaguchi A, Nishino K. AcrAB multidrug efflux pump regulation in <i>Salmonella enterica</i> serovar Typhimurium by RamA in response to environmental signals. <i>J Biol Chem</i> 2008; 283 : 24245-53.
447 448 449	33.	Martin RG, Rosner JL. Genomics of the <i>marA/soxS/rob</i> regulon of <i>Escherichia coli</i> : identification of directly activated promoters by application of molecular genetics and informatics to microarray data. <i>Mol Microbiol</i> 2002; 44 : 1611-24.
450 451 452 453	34.	Yassien MA, Ewis HE, Lu CD <i>et al.</i> Molecular cloning and characterization of the <i>Salmonella enterica</i> Serovar Paratyphi B <i>rma</i> Gene, which confers multiple drug resistance in <i>Escherichia coli</i> . <i>Antimicrob Agents Chemother</i> 2002; 46 : 360-6.
454 455 456	35.	Martin RG, Bartlett ES, Rosner JL <i>et al</i> . Activation of the <i>Escherichia coli marA/soxS/rob</i> regulon in response to transcriptional activator concentration. J <i>Mol Biol</i> 2008; 380 : 278-84.
457 458 459	36.	Zheng J, Cui S, Meng J. Effect of transcriptional activators RamA and SoxS on expression of multidrug efflux pumps AcrAB and AcrEF in fluoroquinolone-resistant <i>Salmonella</i> Typhimurium. <i>J Antimicrob Chemother</i> 2009; 63 : 95-102.

460 461 462 463	37.	Baucheron S, Coste F, Canepa S <i>et al.</i> Binding of the RamR repressor to wild- type and mutated promoters of the RamA gene involved in efflux-mediated multidrug resistance in <i>Salmonella enterica</i> serovar Typhimurium. <i>Antimicrob</i> <i>Agents Chemother</i> 2012; 56 : 942-8.
464 465 466	38.	Baucheron S, Le HS, Doublet B <i>et al. ramR</i> mutations affecting fluoroquinolone susceptibility in epidemic multidrug-resistant <i>Salmonella enterica</i> serovar Kentucky ST198. <i>Front Microbiol</i> 2013; 4 : 213.
467 468 469	39.	Spengler G, Rodrigues L, Martins A <i>et al</i> . Genetic response of <i>Salmonella enterica</i> serotype Enteritidis to thioridazine rendering the organism resistant to the agent. <i>Int J Antimicrob Agents</i> 2012; 39 : 16-21.
470 471		
472		
		Journal of Antimicrobial Chemotherapy: under review

473 **FIGURES:**

474 Figure 1. Expression levels obtained by RT-PCR analysis. Single and double asterisks 475 refer to high levels of *ramA* overexpression, 66- and 74.2-fold, respectively, which are 476 out of scale to facilitate the visualisation of the results.

478

479 Figure 2. Representative location of the RamR binding sites and the MDR-related 480 mutations detected in the *ramA* promoter. White letters and grey boxes indicate the two 481 RamR binding sites. The -35 and -10 boxes of the ramA promoter are underlined. 482 Ellipses indicate DNA sequences not shown. The black arrow is used for the *ramA* 483 transcriptional start site (+1) as well as for the initiation of translation (RamA).

485 **TABLES**:

400

Table 1. Primers used in the RT-PCR analysis.

Genes	Primers	Sequence 5'-3'	Reference
Internal control			
16S rRNA	16S_RT_F	GCGGCAGGCCTAACACAT	39
	16s_RT_R	GCAAGAGGCCCGAACGTC	
Structural genes			
acrB	AcrB_RT_F	TTTTGCAGGGCGCGGTCAGAATAC	11
	AcrB_RT_R	TGCGGTGCCCAGCTCAACGAT	
tolC	TolC_RT_F	GTGACCGCCCGCAACAAC	26
	TolC_RT_R	ATTCAGCGTCGGCAGGTGAC	
acrF	SacrF.RT.1	TACCCAGGACGACATCTCTGA	26
	SacrF.RT.2	CACACCATTCAGACGGCTGAT	
emrB	EmrB_RT_F	CCGTCGTCCTGATGACGTTA	26
	EmrB_RT_R	CCGTTCGGTATGCGTTTCAC	
ompF	SompF.RT1	GGGCGCGACTTACTACTTCAAC	This study
	SompF.RT2	TCGTTTTCGTCCAGCAGGTT	
Regulatory genes			
acrR	SacrR.RT1	AGAACGACGCCGCTTATTGA	12
	SacrR.RT2	GCGCCTGTTGAACCACAAC	
ramA	SramA.RT1	CTCGACACCGACCAGAAGGT	12
	SramA.RT2	GTAAAAATGCGCGTAAAGGTTTG	
soxS	SsoxS.RT1	CATATCGACCAACCGCTAAACA	12
	SsoxS.RT2	CGAAACATCCGCTGCAAATA	
marA	SmarA.RT1	ATTCCAAATGGCACCTGCAA	This study
	SmarA.RT2	CATTTTACGGCTGCGGATGT	

Table 2. Mean values of RT-PCR analysis obtained in five independent experiments.
 488

4	8	9
---	---	---

Summs acrB tolC ompF acrF emrB acrR ranA soxS marA 59-wtl b 1	Strains	Strains Gene expression values ^a																	
59-wt b^{b} 1 1	Strains	а	ıcrB		tolC	01	npF	(acrF	е	nrB	a	crR	r	ramA	ł	soxS	marA	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59-wt	^b		1		1		1		1		1		1		1		1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59-mut1			2.7	(0.59)	-1.2	(0.23)	1.7	(0.27)	-1.5	(0.13)	1.0	(0.25)	19.6	(8.05)	1.2	(0.57)	1.3	(0.23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59-mut2			6.2	(0.36)	-1.8	(0.12)	6.0	(1.43)	-1.8	(0.22)	-1.9	(0.16)	66.0	(12.68)	1.8	(1.77)	4.3	(4.13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59-mut3			2.5	(0.49)	-1.8	(0.05)	1.7	(0.27)	-1.4	(0.35)	1.0	(0.41)	17.3	(9.44)	1.7	(0.85)	2.0	(0.51)
50-wt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50-mut 5.2 (1.33) 2.3 (1.02) -1.4 (0.45) 1.6 (0.86) -1.2 (0.57) -1.3 (0.54) 15.4 (7.78) 1.1 (0.46) 2.0 (1.10) 50-mut 9.5 (4.85) 5.4 (2.69) -2.2 (0.27) 4.9 4.77 -1.6 (0.37) -1.2 (0.49) 74.2 (30.19) 4.3 (4.28) 3.6 (2.35) Values in parenthesis represent ± the standard deviation (SD).	59-64			3.2	(1.11)	-3.3	(0.10)	1.4	(0.33)	-1.9	(0.27)	2.1	(1.57)	13.4	(4.71)	4.6	(2.06)	3.7	(0.48)
50-mut1 5.2 (1.33) 2.3 (1.02) -1.4 (0.45) 1.6 (0.86) -1.2 (0.57) -1.3 (0.54) 15.4 (7.78) 1.1 (0.46) 2.0 (1.10) 50-mut2 9.5 (4.85) 5.4 (2.69) -2.2 (0.27) 4.9 4.77 -1.6 (0.37) -1.2 (0.49) 74.2 (30.19) 4.3 (4.28) 3.6 (2.35) Values in parenthesis represent ± the standard deviation (SD). , Not determined.	60-wt	1		1		1		1		1		1		1		1		1	
50-mut2 9.5 (4.85) 5.4 (2.69) -2.2 (0.27) 4.9 4.77 -1.6 (0.37) -1.2 (0.49) 74.2 (30.19) 4.3 (4.28) 3.6 (2.35) Values in parenthesis represent ± the standard deviation (SD). , Not determined.	60-mut1	5.2	(1.33)	2.3	(1.02)	-1.4	(0.45)	1.6	(0.86)	-1.2	(0.57)	-1.3	(0.54)	15.4	(7.78)	1.1	(0.46)	2.0	(1.10)
Values in parenthesis represent ± the standard deviation (SD). , Not determined.	60-mut2	9.5	(4.85)	5.4	(2.69)	-2.2	(0.27)	4.9	4.77	-1.6	(0.37)	-1.2	(0.49)	74.2	(30.19)	4.3	(4.28)	3.6	(2.35)

490

^{*a*} Values in parenthesis represent \pm the standard deviation (SD). 491

^b ---, Not determined. 492

493

Table 3. Susceptibility testing of all the strains and ciprofloxacin concentrations used for the selection of mutants. 495

Strain	[CIP] (mg/L)	MICs $(mg/L)^b$										
Stram	at selection	CIP	NOR	NAL	AMX	CRO	FOX	TET	CHL	ERY	KAN	
59-wt	<i>a</i>	0.012	0.094	4	>256	0.094	2	64	>256	32	1.5	
59-mut1	0.06	0.125	2	32	>256	0.190	6	128	>256	128	1.5	
59-mut2	0.25	0.38	6	96	>256	0.5	12	128	>256	256	1.5	
59-mut3	2	8	16	8128	>256	0.25	4	96	>256	128	1.5	
59-64	64	256	512	8128	>256	1	96	256	>256	>256	1.5	
60-wt		0.016	0.094	3	1	0.032	3	3	3	32	1	
60-mut1	0.015	0.047	0.19	6	1.5	0.064	8	8	8	192	1	
60-mut2	0.03	0.094	0.38	24	3	0.125	12	12	24	>256	1	

496

^{*a*} ---, clinical isolate not exposed to ciprofloxacin *in vitro*. 497

^b CIP, ciprofloxacin; NOR, norfloxacin; NAL, nalidixic acid; AMX, amoxicillin; CRO, ceftriaxone; FOX, cefoxitin; CHL, chloramphenicol; 498 dXOL

499 TET, tetracycline; ERY, erythromycin; KAN, kanamycin.

500

C

502 **Table 4.** Mutations acquired in the quinolone target genes and the *ramRA* regulatory region. Comparison of the *ramA* transcriptional levels and

503 regulatory mutations with previously reported mutants.

Strains	QRDR mutations						ramRA mutations ^{a,b}		ramA	Salmonella	Reference
	GyrA		GyrB	ParC		ParE	<i>ramR</i> /RamR ^c	ramA promoter ^d	levels ^f	serovar	
59-wt									1	Typhimurium	This study
59-mut1			E466D				Del C ₅₁₄ -G ₅₅₇		19.6	Typhimurium	This study
59-mut2			E466D					Del T ₋₁₆₂ /C ₋₁₅₇	66.0	Typhimurium	This study
59-mut3	S83Y		E466D	S80R			Del A ₃₄₆ -G ₃₅₂		17.3	Typhimurium	This study
59-64	S83Y	D87G	E466D	S80R	F115S			T-158A	13.4	Typhimurium	This study
60-wt									1	Typhimurium	This study
60-mut1							Q19P		15.4	Typhimurium	This study
60-mut2								Del A-174/C-159	74.2	Typhimurium	This study
Previously reported mutants											
LTL	S83F							Del A ₋₁₇₄ /T ₋₁₆₆	69.1	Typhimurium	36
BN10055	S83Y							Del T ₋₁₆₂ /C ₋₁₆₁ e	6.6	Typhimurium	16,37
5408-Cip	D87Y		E466D			V461G	G25A		33.7	Enteritidis	11
05-8560	S83F	D87N		S80I			Ins (1 nt) A ₅₀₆		24.6	Kentucky	38
02-8141	S83F						Del G ₄₂ -G ₁₃₂		106.1	Kentucky	38
02-2818	S83F						Dup (4 nt) C ₅₀₈		29.1	Kentucky	38
5 mutant 3	D87Y							C-157A	10.0	Paratyphi B	30
10 mutant 2	D87Y						Del G ₅₂₀ -G ₅₃₄ ; E160D		94.8	Paratyphi B	30

180x117mm (300 x 300 DPI)

Journal of Antimicrobial Chemotherapy: under review

59-mut2 60-mut2 -35 -10 ✦RamA ++1 59-64 180x39mm (300 x 300 DPI)