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SYNOPSIS     26 

Objectives: This study was focused on analysing the heterogeneity of mutations 27 

occurring in the regulators of efflux-mediated MDR in Salmonella Typhimurium. 28 

Moreover, the impact of such mutations on impairing the transcription of ramA, acrB, 29 

tolC and acrF was also assessed as was the impact on the resistance or decreased 30 

susceptibility phenotype. 31 

Methods: Strains were selected in vitro under increasing ciprofloxacin concentrations. 32 

Etest and broth microdilution tests were used to determine the MICs of several 33 

unrelated compounds. Screening of mutations in the quinolone target genes and the 34 

MDR regulators was performed. RT-PCR analysis was used to detect the levels of 35 

expression of acrB, tolC, ompF, acrF, emrB, acrR, ramA, soxS and marA.  36 

Results: All mutant strains showed increased MICs of most of the antimicrobials tested, 37 

with the exception of kanamycin. Mutations in the quinolone target genes did not occur 38 

in all the mutants, which all harboured mutations in the ramRA regulatory region. All 39 

the mutants overexpressed ramA, tolC and acrB (when active) whereas differential 40 

results were seen for the remaining genes.  41 

Conclusions: Mutations in the ramRA region related to resistance and/or decreased 42 

susceptiblity to antimicrobials predominate in Salmonella. There is heterogeneity in the 43 

type of mutations, with deletions affecting the RamR binding sites having a greater 44 

impact on ramA expression and the MDR phenotype.  45 

 46 

 47 

 48 

49 
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INTRODUCTION 50 

The ever increasing levels of resistance to antimicrobial compounds are of great 51 

concern, particularly for pathogens of clinical relevance. Salmonella enterica serovar 52 

Typhimurium is a pathogen distributed worldwide which typically causes gastroenteritis 53 

in humans.1 Fluoroquinolones and cephalosporins are the current first-line treatments, 54 

however, recent data have revealed that in particular geographic areas, such as China, 55 

high percentages of resistance to compounds such as nalidixic acid (61.9%) and 56 

cefepime, cefotaxime and ceftazidime (90%) have already been detected.2 57 

 Quinolone resistance has been widely studied in Enterobacteriaceae, particularly 58 

in Escherichia coli and S. enterica.3 In E. coli the mechanism which largely contributes 59 

to resistance and/or decreased susceptibility to quinolones is the acquisition of 60 

mutations located in the genes encoding the two quinolone targets: DNA gyrase (gyrA 61 

and gyrB) and topoisomerase IV (parC and parE).4,5 These mutations are usually 62 

acquired in the quinolone resistance-determining regions (QRDRs) detected in each of 63 

the target genes.3 On the other hand, increased drug extrusion by means of the 64 

overexpression of AcrAB-TolC, the main efflux pump described in Enterobacteriaceae,3  65 

is also of great concern since it confers cross-resistance to several unrelated compounds, 66 

including antimicrobial drugs.6,7 To a lesser extent, other efflux systems, such as AcrEF 67 

and EmrAB, have been reported to participate in the extrusion of antimicrobial 68 

compounds.8,9 In Salmonella increased efflux has been described as the primary 69 

mechanism in quinolone resistance acquisition.10 Alternatively, decreased production of 70 

the OmpF porin has at times been related to the MDR phenotype11,12 despite 71 

controversial data suggesting no clear role in S. enterica.13 72 

 Several regulators have been reported to influence the expression of the acrAB 73 

operon in Salmonella. AcrR is the local repressor encoded upstream of the acrAB genes 74 
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and mutations within its coding sequence have been associated with increased 75 

expression of the pump.14 In addition, three homologous transcriptional activators, 76 

RamA, SoxS and MarA, have been associated with increased acrB and tolC expression 77 

levels. While clear associations have been reported for enhanced production of SoxS 78 

and RamA and overexpression of acrAB,11,15,16 only indirect results have associated 79 

greater production of MarA with increased levels of resistance, supposedly mediated by 80 

higher levels of AcrAB.11,17 In terms of regulation, each of these three activators has its 81 

own regulator: RamR, SoxR and MarR, respectively.3 In terms of the MDR phenotype, 82 

the clinical relevance of mutations located in the genes encoding for these latter 83 

regulators has been clearly shown for RamR,18,19 while there have been few reports for 84 

mutations located in the soxRS region.11,15 Concerning MarA, even though its 85 

overexpression has been detected in MDR S. enterica strains,8,20 the putative 86 

responsible mutations in the marRAB region have not been mapped. Naturally-occurring 87 

mutations in this region have been widely reported in E. coli,21,22 whereas, to our 88 

knowledge, such mutations in S. enterica have only been reported in a single study, 89 

associating it with high MarA overexpression and an MDR phenotype.12 90 

 The aim of this study was to determine the mechanisms involved in increasing 91 

the MICs of different antimicrobial agents in a collection of S. Typhimurium mutants 92 

selected in vitro, particularly when studying strains with low MICs of ciprofloxacin and 93 

their derivative mutants selected at the initial steps of drug exposure following a 94 

stepwise procedure. The mechanisms studied included target gene mutations and the 95 

expression of several genes involved in decreasing the intracellular concentration of the 96 

drug. Moreover, and as a novel approach, we also assessed the role and heterogeneity of 97 

ramRA mutations and their impact on increasing the expression of ramA and the 98 

phenotype of decreased susceptibility to multiple antibiotics or MDR. 99 
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MATERIALS AND METHODS 100 

Bacterial strains and selection of resistant mutants  101 

Two S. Typhimurium clinical isolates, strains 59-wt and 60-wt, were recovered from 102 

independent stool samples in the Department of Clinical Microbiology at the Hospital 103 

Clinic of Barcelona, Spain. Strain 59-wt has previously been characterised as have its 104 

derivative mutants displaying increasing ciprofloxacin MICs, including the highly 105 

resistant mutant 59-64.23 As indicated, the clinical isolate 59-wt was grown at 37ºC on 106 

MacConkey agar plates in the presence of ciprofloxacin (Fluka) in a multi-step selection 107 

process with doubling concentrations of the drug.23 Single colonies were randomly 108 

selected at different steps and previously characterised. In the present study we 109 

characterised additional randomly-selected colonies during the process (59-mut1, 59-110 

mut2 and 59-mut3) to assess the occurrence of heterogeneity in the mechanisms of 111 

resistance. Likewise, strain 60-wt was similarly treated and exposed to increasing 112 

ciprofloxacin concentrations and two different mutants were randomly selected (60-113 

mut1 and 60-mut2). 114 

 115 

Susceptibility testing  116 

The MICs of several quinolones and unrelated antimicrobial compounds were 117 

determined by Etest (AB Biodisk) according to the manufacturer’s recommendations 118 

and interpreted according to CLSI guidelines.24 The broth microdilution method was 119 

used to evaluate the MICs of ciprofloxacin, norfloxacin and nalidixic acid when 120 

maximum Etest values were reached. The compounds tested were: ciprofloxacin, 121 

norfloxacin, nalidixic acid, chloramphenicol, tetracycline, erythromycin, amoxicillin, 122 

ceftriaxone and cefoxitin.  123 

 124 

Page 5 of 30

Journal of Antimicrobial Chemotherapy: under review

Journal of Antimicrobial Chemotherapy



Confidential: for peer review only

  

Detection of mutations within the QRDRs and regulatory loci  125 

Mutations acquired in the QRDRs of the gyrA, gyrB, parC, and parE genes, as well as 126 

in the MDR regulatory loci soxRS, marRAB, acrR and ramR were screened by PCR 127 

amplification as described previously.25 Amplicons were purified and sent to Beckman 128 

Coulter Genomics (Essex, UK) for sequencing reactions. Detection of mutations was 129 

carried out using the BioEdit® software (Ibis Biosciences, Carlsbad, CA) by comparison 130 

with the genome of S. Typhimurium LT2 as the reference strain (RefSeq 131 

NC_003197.1). 132 

 133 

RNA extraction and real time PCR  134 

Bacterial pellets were obtained as described previously.25  Briefly, strains were grown in 135 

LB at 37ºC with shaking to reach the exponential phase (OD600=0.6). Four mL of 136 

bacterial cells were treated with 8 mL of RNA Protect Bacteria Reagent (Qiagen) and 137 

subsequently incubated with Tris-EDTA (TE) buffer supplemented with lysozyme. 138 

RNA extractions were obtained using the Maxwell ® 16 Research Instrument 139 

(Promega) and the Maxwell® 16 LEV simplyRNA Blood Kit (Promega) following the 140 

manufacturer’s recommendations. Five independent RNA extractions were made.  141 

The acrB, tolC, ompF, acrF, emrB, ramA, marA, soxS and acrR genes were 142 

tested for RT-PCR analysis following previously described conditions.26 The 16S rRNA 143 

gene was used as an internal control for normalisation, and susceptible strains 59-wt and 144 

60-wt were the reference strains for their respective derived mutants. The 2−∆∆CT method 145 

was used for relative gene expression calculations.27 Five independent assays were 146 

performed and each RNA sample was tested in triplicate. The primers used are reported 147 

in Table 1. Mean values and standard deviation are detailed in Table 2. 148 

 149 
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RESULTS AND DISCUSSION 150 

Quinolone resistance and the MDR phenotype 151 

Three and two derivative mutants were selected from the quinolone-susceptible clinical 152 

isolates 59-wt and 60-wt, respectively. Susceptibility testing to several unrelated 153 

compounds was used to determine the acquisition of the quinolone resistance and MDR 154 

phenotypes (Table 3). The term MDR has been defined as resistance to one agent in 155 

three or more antimicrobial categories,28 or to four or more antimicrobials in the 156 

particular case of nontyphoidal Salmonella.29 In the present study we used instead the 157 

term decreased susceptibility to multiple antibiotics when increased MICs to more than 158 

4 antimicrobial compounds were seen even though the resistance breakpoints were not 159 

reached. Strain 59-64, already characterised in a previous study,23 was also included in 160 

the present work for comparison with the mutants.  161 

The results showed that in comparison with their wild-type strain, all selected 162 

mutants had increased MICs (1.5- to >8-fold) to all the drugs tested, except for 163 

kanamycin, for which no increase was recorded. Only 59-wt derivative mutants showed 164 

the acquisition of QRDR mutations (Table 4). Strains 59-mut1 and 59-mut2 showed a 165 

similar genetic background in terms of target gene mutations. However, higher MIC 166 

values were seen for 59-mut2 concerning all the drugs (except for amoxicillin and 167 

chloramphenicol, which had already shown maximum Etest values in 59-wt, and 168 

tetracycline). Likewise, on comparing strains 60-mut1 and 60-mut2 a similar conclusion 169 

was obtained, with higher MIC results seen for 60-mut2 despite having background 170 

similarity. In accordance with the fact that strains 59-mut3 and 59-64 were selected at 171 

higher ciprofloxacin concentrations, these strains showed the highest MICs, mostly 172 

concerning quinolones, being maximal for strain 59-64.  173 
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 Taking into account the increased MICs of most of these compounds in all the 174 

mutants, and the fact that increased efflux confers a cross-resistance phenotype by 175 

means of increased AcrAB or even a hitherto uncharacterised efflux pump,6,23 enhanced 176 

extrusion activity was the most likely mechanism underlying this phenotype. Moreover, 177 

the results obtained from 60-wt and its derivative mutants strengthen the idea that efflux 178 

is selected at primary stages of the process of quinolone resistance acquisition as 179 

suggested previously,10,25 and this mechanism is selected even before target gene 180 

mutations. It should be noted that mutants selected in a single step-selection process, 181 

usually performed at concentrations higher than the initial MIC, may follow a different 182 

pattern of acquisition of resistance mechanisms. 183 

  184 

Expression of structural genes involved in MDR 185 

Gene expression analysis was performed to determine the expression patterns of 186 

genes related to bacterial efflux and permeability. The results were interpreted after 187 

comparison of the expression levels of each clinical isolate with their respective mutant 188 

derivatives. The genes studied were acrB, tolC, ompF, acrF and emrB (Figure 1)(Table 189 

2). Overexpression of the AcrAB-TolC efflux pump has been reported as the most 190 

relevant mechanism in terms of efflux.3 In the present study acrB was only analysed in 191 

60-wt and its derivates, which all overexpressed this gene (5.2- to 9.5-fold), since it was 192 

reported that 59-wt has a mutation inactivating the acrAB operon.23 The tolC gene was 193 

found to be consistently overexpressed in all the mutants (>2.3-fold), particularly for 194 

strains 59-mut2 and 60-mut2 (5.4- and 6.2-fold, respectively). On the contrary, ompF 195 

always showed decreased expression with the strongest results being seen in strains 59-196 

64 (-3.3-fold) and 60-mut2 (-2.4-fold). With these results we suggest that AcrAB-TolC 197 

was involved in the phenotype of decreased susceptibility to multiple antibiotics in the 198 
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case of 60-wt derivatives whereas an unknown efflux system, likely acting in 199 

conjunction with TolC, participated in the case of 59-wt derivatives. 200 

 Next, we assessed other efflux-related genes, such as acrF and emrB, (Figure 201 

1)(Table 2) which may play a secondary role in antibiotic resistance.8,9 Our results 202 

showed that only two strains clearly overexpressed acrF [59-mut2 (6-fold) and 60-mut2 203 

(4.9-fold)] whereas emrB showed a slightly decreased expression in all the mutants (-204 

1.2- to -1.9-fold). Thus, we can only suggest a role in increasing the MICs mentioned 205 

for the AcrEF efflux system in these two particular mutants, one of which is also an 206 

AcrAB-overproducer (60-mut2). 207 

 208 

Expression of the MDR regulators: the key role of ramA 209 

In addition to the analysis of these structural genes, we also studied the levels of 210 

expression of the AcrAB regulators: acrR, ramA, soxS and marA (Figure 1)(Table 2). 211 

We could not find a clear interpretation for acrR expression. In contrast, ramA was 212 

overexpressed in all the mutants thereby suggesting this regulator as the cause of the 213 

increased MICs in both the mutants overexpressing acrB and those overexpressing an 214 

unknown efflux system. Similar results have also highlighted the greater importance 215 

and prevalence of increased RamA over that of the other regulators.16,30 Maximal ramA 216 

expression levels were seen for 59-mut2 and 60-mut2 (66- and 74.2-fold, respectively) 217 

above the levels detected for the remaining mutants (13.4- to 19.6-fold). In line with 218 

these results, these two strains also showed higher MICs and acrB and tolC expression 219 

values in comparison with their closely related mutants 59-mut1 and 60-mut1, 220 

respectively. In addition, as mentioned above, 59-mut2 and 60-mut2 were also reported 221 

to clearly overexpress acrF. This latter association between high ramA expression (>60-222 
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fold in the present study) and tolC and acrF overexpression agrees with a previously 223 

reported study.31 224 

The soxS expression values detected in the present study were <2-fold higher in 225 

most of the mutants versus the expression levels seen in the two clinical isolates (Figure 226 

1). Only two mutants, strains 59-64 and 60-mut2 showed an overexpression of >4-fold. 227 

However, it was not possible to consistently associate this trait with higher expression 228 

values of ramA or acrF in both mutants. On the contrary, these two strains did show the 229 

minimum levels of ompF expression (-3.3- and -2.2-fold, respectively). Similarly, marA 230 

transcription also showed ≤2-fold increased expression in three mutant strains: 59-mut1, 231 

59-mut3 and 60-mut1. On the contrary, the highest levels were seen in 59-mut2 (4.3-232 

fold), 59-64 (3.7-fold) and 60-mut2 (3.6-fold).  233 

To understand our results it is worth mentioning that the RamA binding sites 234 

have already been reported in Salmonella concerning the acrAB and tolC promoters.32 235 

The 20-bp sequences recognised by this regulator resemble those initially reported to be 236 

present in all members of the marA/soxS/rob regulon in E. coli.33 It has been described 237 

that most of the residues of the two helix-turn-helix motifs (important for DNA 238 

sequence recognition) of MarA from E. coli are conserved in RamA from Salmonella 239 

enterica serovar Paratyphi B.34 Moreover, it has previously been reported that the 240 

marRAB promotor contains its own marbox sequence.33 In agreement with this, RamA 241 

from S. Paratyphi B has been shown to bind the MarA operator of E.coli.34 Thus, the 242 

binding sites characterised for MarA and SoxS in E. coli, equally termed marbox or 243 

soxbox, are similar to the already mentioned rambox in Salmonella.31,32 Therefore, 244 

increased levels of RamA (>60-fold) and/or SoxS (>4-fold) could bind to the 245 

rambox/marbox located in the marRAB promoter and activate marA transcription, hence 246 

explaining the increased levels of marA expression observed for strains 59-mut2 247 
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[RamA-overproducer (>60-fold)], 59-64 [SoxS-overproducer (>4-fold)] and 60-mut2 248 

[RamA-overproducer (>60-fold) and SoxS-overproducer (>4-fold)]. Nonetheless, lower 249 

ramA overexpression values (13- to 20-fold) would not have the same effect, thereby 250 

reinforcing the idea of an activator concentration-dependent response.31,35  251 

 252 

Unravelling the mutations leading to the phenotype of decreased susceptibility to 253 

multiple antibiotics  254 

In order to determine the mutations underlying the resistance phenotypes, sequencing 255 

and detection of mutations was performed in all the strains for all known regulators of 256 

MDR (acrRA, ramRA, soxRS, marRAB and acrSE). The results revealed the acquisition 257 

of mutations in the ramRA loci for all the mutants (Table 4). Mutations were located 258 

within the ramR coding sequence, either leading to a single amino acid substitution 259 

(Gln-19?Pro, strain 60-mut1) or even deletions of 44 and 6 nucleotides (strains 59-260 

mut1 and 59-mut3, respectively). Surprisingly, the two strains (59-mut2 and 60-mut2) 261 

with the highest ramA overexpression values harboured a similar genotype: a 6- and 16-262 

nucleotide deletions, respectively, in the ramA promoter. Lastly, and as previously 263 

reported23 strain 59-64 showed a single-nucleotide change also located in the ramA 264 

promoter.  265 

 Previous reports have revealed that mutations or gene interruptions can be either 266 

acquired within ramR or in the ramA promoter.11,16,30 However, no association has ever 267 

been made between the type of mutation and transcription levels of ramA. The results 268 

observed in the present study point out that severe nucleotide deletions located in the 269 

ramA promoter have a higher impact on increasing the expression of this regulator, 270 

whereas mutations within ramR or single nucleotide changes in the ramA promoter have 271 

a lesser effect. We performed an exhaustive analysis of the literature looking for studies 272 
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which determined both the ramA transcription levels and ramRA mutations in strains 273 

with resistance or decreased susceptibility to fluoroquinolones. Studies conducted in 274 

serovars Typhimurium,36,37 Enteritidis,11 Kentucky38 and other serovars30 were found to 275 

report similar results (Table 4). In order to understand this situation, it is necessary to 276 

note that RamR has been reported to bind as a homodimer to two RamR binding sites 277 

located in the ramA promoter (Figure 2).37 Thus, taking into account all this information 278 

we hypothesize that important deletions occurring in these binding sites seriously impair 279 

the RamR repressive activity by preventing RamR binding and lead to high levels of 280 

ramA expression (>60-fold). On the contrary, mutations or deletions occurring in RamR 281 

or single nucleotide modifications affecting one binding site do not seem to abolish 282 

repression to the same extent and lead to moderate levels of ramA transcription (<~40-283 

fold). This latter situation would be supported by the capacity of the mutated form of 284 

RamR to partially preserve its repressive activity or by the existence of other regulators 285 

capable of binding to the ramA promoter even in the absence of a functional RamR 286 

protein. Nonetheless, to our knowledge two exceptions have been reported, one S. 287 

Kentucky strain38 and one S. Paratyphi B mutant (Table4).30 The former situation might 288 

be explained by a large deletion detected at the very beginning of the repressor 289 

(affecting the protein sequence from the amino acid at position 14), whereas no clear 290 

explanation could justify the latter situation. Therefore, in order to elucidate the role of 291 

these mutations and strengthen or not our hypothesis, a larger number of strains needs to 292 

be analysed in further studies.  293 

 In no strain did we find any mutation in any of the other regulatory sequences 294 

analysed in the present study. Consequently, we are unable to explain the increased soxS 295 

transcription reported in 59-64 and 60-mut2. Concerning acrF overexpression, previous 296 

results have associated it with mutations within the acrS gene or in the acrEF 297 
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promoter.9 However, in the present study no mutation in the acrSE regulatory region 298 

could explain our findings. Instead, and as previously mentioned and reinforced by our 299 

results, overexpression of this efflux component is related to the levels of ramA 300 

transcription.31 High levels of ramA expression trigger acrF overexpression whereas 301 

intermediate levels do not. In line with these results, a previous study has also 302 

associated nucleotide deletions in the ramA promoter with acrEF overexpression.36 In 303 

view of these findings, the regulatory network that controls the expression of genes 304 

involved in the phenotype of decreased susceptibility to multiple antibiotics or MDR 305 

still needs further research to completely understand the bacterial response for survival 306 

under antimicrobial exposure. Nonetheless, we must keep in mind that our observations 307 

have arisen from mutants selected in a stepwise process which may harbour additional 308 

mutations with unknown influence. Additional experiments are required in order to 309 

validate these results. 310 

 311 

Conclusions 312 

The results of our study indicate that RamA overexpression leads to the 313 

phenotype of decreased susceptibility to multiple antibiotics by using two different 314 

efflux-related strategies: overexpression of AcrAB and overexpression of a hitherto 315 

uncharacterised efflux pump. Moreover, we provide further evidence of the prevalence 316 

of ramRA mutations versus other acrB regulators in the acquisition of MDR. However, 317 

heterogeneity was observed in the types of mutations acquired, which may be associated 318 

with different levels of ramA transcription. Large deletions affecting the RamR binding 319 

sites in the ramA promoter were observed in strains with higher ramA transcription 320 

levels, a trait which may account for the highest expression levels of acrB, tolC, marA 321 
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and acrF, hence related to a major contribution to the phenotype of decreased 322 

susceptibility to multiple antibiotics.  323 

 324 
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FIGURES: 473 

Figure 1. Expression levels obtained by RT-PCR analysis. Single and double asterisks 474 

refer to high levels of ramA overexpression, 66- and 74.2-fold, respectively, which are 475 

out of scale to facilitate the visualisation of the results.  476 

 477 

 478 

Figure 2. Representative location of the RamR binding sites and the MDR-related 479 

mutations detected in the ramA promoter. White letters and grey boxes indicate the two 480 

RamR binding sites. The -35 and -10 boxes of the ramA promoter are underlined. 481 

Ellipses indicate DNA sequences not shown. The black arrow is used for the ramA 482 

transcriptional start site (+1) as well as for the initiation of translation (RamA). 483 

 484 
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TABLES: 485 

Table 1. Primers used in the RT-PCR analysis. 486 

Genes Primers Sequence 5'-3' Reference 
Internal control    
 16S rRNA 16S_RT_F GCGGCAGGCCTAACACAT 39 
  16s_RT_R GCAAGAGGCCCGAACGTC  
Structural genes    
 acrB AcrB_RT_F TTTTGCAGGGCGCGGTCAGAATAC 11 
  AcrB_RT_R TGCGGTGCCCAGCTCAACGAT  
 tolC TolC_RT_F GTGACCGCCCGCAACAAC 26 
  TolC_RT_R ATTCAGCGTCGGCAGGTGAC  
 acrF SacrF.RT.1 TACCCAGGACGACATCTCTGA 26 
  SacrF.RT.2 CACACCATTCAGACGGCTGAT  
 emrB EmrB_RT_F CCGTCGTCCTGATGACGTTA 26 
  EmrB_RT_R CCGTTCGGTATGCGTTTCAC  
 ompF SompF.RT1 GGGCGCGACTTACTACTTCAAC This study 
  SompF.RT2 TCGTTTTCGTCCAGCAGGTT  
Regulatory genes    
 acrR SacrR.RT1 AGAACGACGCCGCTTATTGA 12 
  SacrR.RT2 GCGCCTGTTGAACCACAAC  
 ramA SramA.RT1 CTCGACACCGACCAGAAGGT 12 
  SramA.RT2 GTAAAAATGCGCGTAAAGGTTTG  
 soxS SsoxS.RT1 CATATCGACCAACCGCTAAACA 12 
  SsoxS.RT2 CGAAACATCCGCTGCAAATA  
 marA SmarA.RT1 ATTCCAAATGGCACCTGCAA This study 
    SmarA.RT2 CATTTTACGGCTGCGGATGT   

 487 
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Table 2. Mean values of RT-PCR analysis obtained in five independent experiments. 488 
 489 

Strains 
Gene expression valuesa 

acrB tolC ompF acrF emrB acrR ramA soxS marA 
59-wt  ---b  1  1  1  1  1  1  1  1  
59-mut1  ---  --- 2.7 (0.59)  -1.2 (0.23) 1.7 (0.27)  -1.5 (0.13) 1.0 (0.25) 19.6 (8.05) 1.2 (0.57) 1.3 (0.23) 
59-mut2  ---  --- 6.2 (0.36)  -1.8 (0.12) 6.0 (1.43)  -1.8 (0.22)  -1.9 (0.16) 66.0 (12.68) 1.8 (1.77) 4.3 (4.13) 
59-mut3  ---  --- 2.5 (0.49)  -1.8 (0.05) 1.7 (0.27)  -1.4 (0.35) 1.0 (0.41) 17.3 (9.44) 1.7 (0.85) 2.0 (0.51) 
59-64  ---  --- 3.2 (1.11)  -3.3 (0.10) 1.4 (0.33)  -1.9 (0.27) 2.1 (1.57) 13.4 (4.71) 4.6 (2.06) 3.7 (0.48) 
60-wt 1  1  1  1  1  1  1  1  1  
60-mut1 5.2 (1.33) 2.3 (1.02)  -1.4 (0.45) 1.6 (0.86)  -1.2 (0.57)  -1.3 (0.54) 15.4 (7.78) 1.1 (0.46) 2.0 (1.10) 
60-mut2 9.5 (4.85) 5.4 (2.69)  -2.2 (0.27) 4.9 4.77  -1.6 (0.37)  -1.2 (0.49) 74.2 (30.19) 4.3 (4.28) 3.6 (2.35) 

 490 

a Values in parenthesis represent ± the standard deviation (SD). 491 

b ---, Not determined. 492 

 493 

494 
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Table 3. Susceptibility testing of all the strains and ciprofloxacin concentrations used for the selection of mutants. 495 

Strain [CIP] (mg/L) 
at selection 

MICs (mg/L)b 
CIP NOR NAL AMX CRO FOX TET CHL ERY KAN 

59-wt --- a 0.012 0.094 4 >256 0.094 2 64 >256 32 1.5 
59-mut1 0.06 0.125 2 32 >256 0.190 6 128 >256 128 1.5 
59-mut2 0.25 0.38 6 96 >256 0.5 12 128 >256 256 1.5 
59-mut3 2 8 16 8128 >256 0.25 4 96 >256 128 1.5 
59-64 64 256 512 8128 >256 1 96 256 >256 >256 1.5 
60-wt --- 0.016 0.094 3 1 0.032 3 3 3 32 1 
60-mut1 0.015 0.047 0.19 6 1.5 0.064 8 8 8 192 1 
60-mut2 0.03 0.094 0.38 24 3 0.125 12 12 24 >256 1 

 496 

a ---, clinical isolate not exposed to ciprofloxacin in vitro. 497 

b CIP, ciprofloxacin; NOR, norfloxacin; NAL, nalidixic acid; AMX, amoxicillin; CRO, ceftriaxone; FOX, cefoxitin; CHL, chloramphenicol; 498 

TET, tetracycline; ERY, erythromycin; KAN, kanamycin. 499 

 500 

501 
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Table 4. Mutations acquired in the quinolone target genes and the ramRA regulatory region. Comparison of the ramA transcriptional levels and 502 

regulatory mutations with previously reported mutants. 503 

Strains 
QRDR mutations ramRA mutationsa,b ramA 

expression 
levelsf 

Salmonella 
serovar Reference 

GyrA GyrB ParC ParE ramR/RamRc ramA promoterd 
59-wt  ---  ---  ---  ---  ---  ---  ---  --- 1 Typhimurium This study 

59-mut1  ---  --- E466D  ---  ---  --- Del C514-G557  --- 19.6 Typhimurium This study 

59-mut2  ---  --- E466D  ---  ---  ---  --- Del T-162/C-157 66.0 Typhimurium This study 

59-mut3 S83Y  --- E466D S80R  ---  --- Del A346-G352  --- 17.3 Typhimurium This study 

59-64 S83Y D87G E466D S80R F115S  ---  --- T-158A 13.4 Typhimurium This study 
60-wt  ---  ---  ---  ---  ---  ---  ---  --- 1 Typhimurium This study 
60-mut1  ---  ---  ---  ---  ---  --- Q19P  --- 15.4 Typhimurium This study 
60-mut2  ---  ---  ---  ---  ---  ---  --- Del A-174/C-159 74.2 Typhimurium This study 
Previously reported mutants 
LTL  S83F  ---  ---  ---  ---  ---  --- Del A-174/T-166 69.1 Typhimurium 36 

BN10055 S83Y  ---  ---  ---  ---  ---  --- Del T-162/C-161
e 6.6 Typhimurium 16,37 

5408-Cip D87Y  --- E466D  ---  --- V461G G25A  --- 33.7 Enteritidis 11 
 05-8560 S83F D87N  --- S80I  ---  --- Ins (1 nt) A506  --- 24.6 Kentucky 38 
 02-8141 S83F  ---  ---  ---  ---  --- Del G42-G132  --- 106.1 Kentucky 38 
 02-2818 S83F  ---  ---  ---  ---  --- Dup (4 nt) C508  --- 29.1 Kentucky 38 
5 mutant 3 D87Y  ---  ---  ---  ---  ---  --- C-157A 10.0 Paratyphi B 30 

10 mutant 2 D87Y 
 ---  ---  ---  ---  --- 

Del G520-G534; 
E160D  --- 94.8 Paratyphi B 30 
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3 mutant 2 S83Y  ---  ---  ---  ---  --- R46P  --- 34.3 Livingstone 30 
1 mutant 2 S83Y  ---  ---  ---  ---  ---  ---   41.6 Infantis 30 
 504 

 505 

a Del, deletion. Ins, insertion. Dup, duplication  506 

b Mutations leading to the maximum ramA expression values are represented in bold.  507 

c Mutations are indicated by either the nucleotide positions deleted relative to the translation start site or the amino acid substitution. 508 

d Numbers indicate the upstream positions relative to the translation start site. 509 

e This is a 2-nucleotide deletion although only one nucleotide affects a RamR binding site. 510 

f  Maximum ramA expression values are represented in bold. 511 

 512 
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