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The average multipole surface-plasmon energy for simple metals, as well as that of ordinary surface
and bulk plasmons, is obtained using energy-weighted moments of the electronic response to sufficiently
general external perturbations. A local approximation of exchange and correlation effects is used within
a jellium model. Band-structure effects are incorporated through an effective electronic mass. Taking
advantage of the transparency of the method, we analyze under what circumstances such modes might
be observable. It is shown that due to an interplay between Coulomb and kinetic energies, the multipole
modes become unobservable for increasing values of the transferred momentum (g) parallel to the sur-
face. The value of g at which the multipole mode becomes unobservable is much smaller than the cutoff
value for Landau damping. The effect of the electronic surface diffuseness is also analyzed. We compare
our results with previous density-functional calculations and with recent experimental data for Na, K,

and Cs.

I. INTRODUCTION

Despite the great amount of theoretical effort invested
in the characterization and understanding of multipole
plasmon modes on metal surfaces,! 8 and the existence
of some indirect experimental signs in surface photoemis-
sion from Al (Ref. 9) and photoyield data from alkali met-
als, '° direct experimental evidence has not been reported
until recently in inelastic reflection electron scattering on
smooth films of Na, K, and Cs.!"!2 Up to now , no ex-
perimental observation has been reported of the existence
of these modes from energy-loss spectroscopy on high-
density metals such as aluminum and still some uncer-
tainties concerning their nature and properties are un-
solved.

Multipole plasmon modes are associated with
electronic-density fluctuations that are peaked at the sur-
face region and have decreasing oscillating amplitude to-
wards the interior of the metal. The integral of the elec-
tronic density perpendicular to the surface is zero.®!?
Although these modes have a surface origin, they carry
momentum both in the normal as well as in the parallel
directions, making them optically active in contrast to or-
dinary surface plasmons, which have a monopole charac-
ter. The frequency of the multipole mode lies, for a fixed
value of the momentum g parallel to the surface, between
the bulk and the monopole plasmon values. At g =0,
both experimental data and theoretical calculations'? in-

tersect at approximately 0.8w,. This value of w is be-

tween the bulk and the surface values (wp and
w,/ v2=0. 71w, respectively).

For small g values, the slope of the dispersion relation
is positive as a consequence of the induced electronic-
charge distribution. The centroid of the induced elec-
tronic charge, defined as

f dz z6n(z,w)

dlw)=>—""""
(w) fdzﬁn(z,w) ’

(1)
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where the induced charge 6n is, in general, a complex
function, 2 lies in the interior of the metal in contrast to
the case of the centroid of ordinary surface modes, which
lies outside and has a negative slope. As was discussed by
Feibelman’ and Tsuei et al.!! in the long-wavelength lim-
it, the energy of the mode depends on the average
ground-state (g.s.) electronic density seen by the electro-
static potential created by the induced charge. The in-
duced potential is peaked at the centroid position and as
q increases becomes more localized in the region of the
centroid, thus making the slope of the dispersion relation
positive because of the increase of the average electronic
density. There is no known analytical expression for the
dispersion relation in the low-q limit.

The first theoretical predictions were developed within
the hydrodynamical approximation,*? which turned out
to be able to obtain the new modes if a surface electronic
structure, which mimicked the -electronic-surface
diffuseness, was assumed. Such modes disappear if a
sharp metal-vacuum interface is assumed. Dobson and
Harris® confirmed the existence of additional surface-
plasmon modes on a bare jellium surface within a micro-
scopic calculation and emphasized the use of a correctly
self-consistent zero-order surface electron-density profile.
Feibelman’ and later Liebsch® obtained the response of
the surface characterized by the centroid of the charge
induced by time-dependent arbitrary external fields. The
imaginary part of this frequency-dependent centroid
function develops a resonant structure at about 0.8w,,
which is due to the multipole normal mode. Within a
time-dependent density-functional approach (TDLDA),
Tsuei et al.'? obtained good agreement with experimen-
tal data. In their calculation they emphasize the con-
sistent treatment of the electron-electron interaction in
the g.s. and in the dynamical response to an external per-
turbation.

The aim of the present work is to investigate some
properties of the collective multipole excitations that
have not been handled in previous studies, taking advan-
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tage of the facilities of the sum-rule (SR) method used.
The SR provides a useful approximation of the average
excitation energies of fermion systems confined to
different geometries. It has produced a wealth of infor-
mation about the nature of collective modes in metallic
systems. 37! Exchange and correlation can be easily in-
corporated within a local-density approximation and
band effects can be included in a jellium model through
an effective electronic mass. We pay special attention to
the different contributions to the energy and address the
question of under what circumstances such modes might
be observable.

In the calculation we closely follow some previous
works!®!® and will only remark on the new points includ-
ed in the present case. This paper is organized as follows.
In Sec. 11, the SR calculation is performed and compared
with previous formulations carried out on different sys-
tems using the same technique. In Sec. III, results are
compared with experimental data and previous theoreti-
cal calculations, and in Sec. IV, we present some conclud-
ing remarks.

II. GENERAL EQUATIONS

The SR approximation used in this work provides a
method of obtaining the average excitation of a system in
response to a given external operator, and it is especially
useful when the system develops a dominantly collective
response. SR’s are energy moments of the strength func-
tion (also called the response function) S (E) defined as

S(E)=38E —E)|(1|Q|0)|*, (2)
!

where the sum extends over all excited states. Q is the
perturbing operator, E;, |I), and |0) are the excitation
energies, excited state, and the g.s. of the system, respec-
tively. If by definition, the p-sum rule reads

mp=fE”S(E)dE=21E[’I(I|Q10)|2 , (3)

the average value of the excitation energy and the vari-
ance o' are given by

E:ml/mo N (4)
(m,/my) . (5)

Among these moments, the ones with p =—1, 1, and 3
play an important role in the application of SR’s to the

study of collective resonance states of the system. They
& 2

0’2=m2/m0—

can be used to estimate E and o°. Defining

E,=(m,/m,_,)""?, it has been shown® that
E,<E<E,, (6)
0*<(E3—E?)/4. @)

If the external operator Q has the appropriate symme-
try and couples to the normal modes of the system, then
the response saturates by a single mode and most of the
strength is in a narrow energy region. Under such condi-
tions, as is the case for some resonant collective states, £,
and E; are close together and both are good estimates of
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E. We will concentrate on E (the upper bound to the
energy) from which good results have been obtained in
previous works. 1181 The dispersion relation will be ob-
tained from

Ey=[m3/m]'"*. (8)

Manipulation of Eq. (3) for p =1 and 3 leads**?! to
simplified expressions that depend only on the Hamiltoni-
an of the system, its g.s., and the external operator.
These are given by

m,=1(0l[@",[H,Q]]l0) , ©)
and
my=1(ol[[Q",H],[H,[H,Q]]]l0) , (10)

where QJ' denotes the Hermitian conjugate operator. The
linear-energy moment m is easily calculated from Eq. (9)
when Q depends only on position. The cubic moment is
easier to obtain by scaling the g.s. |0). Defining the
scaled function as

|p)=e#90) | (11
we get
1 82
—{(q|H|n) . (12)
ms;= 2 8 2 7]| ]TI 7=0

We define the scaled particle and kinetic-energy densi-
ties [we use atomic units (a.u.) throughout]

n (r)={nlf|n)=n +qn,+Pn,+ -, (13)
r)={(q|é|n)=0c+no,+nlc,+ -, (14)

where
ﬁ=28(r—r,-) , (15)
6= EV 8(r— ) , (16)

and

=(ola[0), 17
n,=1(0l[[#,[H,Q]],[H,Q]]l0) , (19)

with similar expressions for o, o, and ¢,. Notice that
our particle and kinetic-energy densities are defined as

=z|¢,l2 » (20)
a=zl€¢i|2 . 1)

Expanding the expectation value of the Hamiltonian in
powers of m, Eq. (12) provides a straightforward but
cumbersome evaluation of m ;.

For r-dependent operators Q it has been shown? that
o, does not contribute to m; and that

ny=—V;(nu;), (22)
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n,=—1V.nu;), (23)
and
oy=30{ —u (Vi Vu))+(V;u)[Viu; +V,u, 1}
+ 5V, V,u,)[V,V, (nuy)]
+HVn)XV,;Veu ) [Viu; + V0,1, (24)

where V; means the Cartesian i-coordinate derivative, a
sum over repeated indices is understood and

u=vgQ . (25)

We refer the interested reader to Ref. 16 and references
therein for further details.

The most accurate application of the method consists
in the use of the self-consistent g.s. calculated from the
same Hamiltonian H as that used in the determination of
m, and m, in Egs. (9) and (12). Instead, we use different
analytical approximations of the g.s. We will show in the
next section that the sensitivity of the results on the
choice of the g.s. is extremely low.

The jellium model is used to describe the neutralizing
positive background. The metal occupies the negative
part of the z axis and z =0 is the position of the positive
jellium edge. The Hamiltonian consists of a kinetic term
(T), a direct Coulomb term (C), which includes electron-
electron and electron-jellium interactions, as well as both
an exchange (ex) and a correlation (cor) term.

For the exchange and correlation energy densities,
Slater- and Wigner-type local expressions are used,

173

e(ex)=—- n#/3 26)

4

3

and

a(4mn /3)n
b(4mn/3)3+1

respectively, where n is the electron-density operator,
a =0.44, and b =7.8. The use of other state-of-the-art
representations of the local correlation energy, such as
those of Refs. 23 and 24, does not change the numerical
results by more than a few percent.!” We stress that a
different treatment has been followed with the kinetic
term. The kinetic contribution to m; and m; has been
evaluated using the one-body kinetic-energy operator of
Eq. (16) in Eq. (12), which finally yields an expression
that depends on the g.s. electronic and kinetic-energy
densities [see Eq. (24)]. For this last density, the im-
proved Thomas—Fermi-von Weizsiacker functional given
by

e(cor)=— , (27)

I2
=3 (322 3n snyBn” 28)
8 n

is used, where B is the von Weizsicker coefficient (taken
equal to 1) and n’ denotes the z derivative. As a conse-
quence, the kinetic contribution contains nonlocality in
contrast to the exchange and correlation terms that are
purely local.

Once the Hamiltonian is fixed, the key part of the
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method lies in the election of an appropriate external
operator Q; it must not mix nor miss the eigenmodes of
the system. In previous works using the same method
and the same Hamiltonian in the study of the normal
modes of metallic spheres, two different operators were
used. The first, QP'=r'Y,(6,4),'> where Y,o(6,4) is the
spherical harmonic function, provided the mean energy
of the surface-plasmon excitations characterized by the
well-defined quantum number / and the dispersion rela-
tion (energy versus radius of the sphere). The dispersion
relation obtained agreed with previous calculations
and with experimental data. A second operator,

sPh= (rq,)Yy(0,4),'® where j, is the spherical Bessel
function, added a new parameter g, (momentum along
the radial direction). This operator allowed the possibili-
ty of excitation of modes throughout the volume of the
sphere. The induced density is peaked at the surface re-
gion but has decreasing amplitude oscillations towards
the interior of the sphere. The spectrum turns out to be
much richer than in the case of the first operator and for
each / value, an extra index is necessary to specify the
eigenmode. Due to the finite size of the sphere, the g,
momentum is quantized and only for some g, values, re-
lated to the radius R of the sphere, the response has a res-
onant behavior, which yields an oscillatory structure to
the energy of the system as a function of g, (see Fig. 5 in
Ref. 16).

Recently, the plane metallic surface has been examined
using this same approximation.'*?> The operator used to
generate surface plasmons is Q; =e'4Pe %, where r=(p, z).
The well-defined quantum number is the momentum q
parallel to the surface and the exponentially decreasing
behavior inside the metal guarantees the convergence of
the space integrals in the calculation.

For potassium the agreement with experimental data is
quite good, comparable with other self-consistent theoret-
ical calculations.!> However, for Na this agreement di-
minishes for large g values.

The operator Q.,, capable of generating the multipole
surface-plasma modes must fulfill several conditions.
One of these conditions is that it must depend on an extra
parameter (7), momentum of a standing wave in the z
direction. Furthermore, to generate extended modes in
the volume with a non-negligible probability, the external
operator must be peaked within the metal. The function
chosen is

Omp=¢'4%e 9% cos(12) . (29)

[The g component of the Fourier transform of the poten-
tial created by a point charge moving parallel to the sur-
face at z =0 would be Q =(1/2mq)e dPe ~4l7 ]

A quite common criticism of this procedure is that one
loses the physical meaning of the Q operator. The answer
to this objection is that, in general, the energies of the
normal modes of the system do not depend on the way
one excites them. The main problem arises from the pos-
sible mixture of modes caused by Q. However, if the
response is dominated by a collective mode, the structure
of S(E) in Eq. (2) has only one peak, the summation in
Eq. (3) has only one term, and the contribution of Q to E;
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in Eq. (8) is completely eliminated. This is the case in the
low-g-value region of the spectrum, but it is only approxi-
mate for increasing values of g. Other operators, which
were easier to manage analytically, were tested, but either
they did not show a sensitive resonant behavior of the en-
ergy as a function of 7, as we expected, or they did not
correctly reproduce the limits for low g and 7 values.

Using Egs. (26)-(28) and (29) into Egs. (9) and (12)
yields integral expressions on the g.s. electronic density
n(z) along the z axis. The expressions for m | and m are
given in the Appendix. An effective electronic mass has
been included to incorporate band effects.

Two different analytical approximations are used for
n (z); the first, a double-step function centered at z =0,

ng(z)=—>|6 +0 . (0)

d
— +_
)

0 d
-0 —, 2
2 2

where n,=3/4nr. (where r, is the bulk one-electron ra-
dius), 6(x) is the step function, and d is the width of the
electronic-profile step of density n,/2. The second is an
analytical approximation of the Lang-Kohn calculation
given by

Mo
e?/P+1
The double step is taken to be the surface width of the
smooth density [Eq. (31)], defined as d =z, —z; where
n(z,)=0.1ny, and n(z,)=0.9n,."

The effective electron mass used in the calculations and
the & parameter, which determines the softness of the
electronic profile [Eq. (31)], are taken from the fit of the
polynomial approximation to the experimental data given
in Ref. 12 for the surface monopole modes and the
analytical expression obtained using Q, in the low-q limit,
which is given by’

nig(z)= (31)

w

w(g)=—==[1—¢8In(2)] . (32)
D=5 [1—¢ ]

Numerical calculation of the space integrals is carried

out along a longitude centered at z =0 and bounded by z

values that satisfy the condition

e 2 <0710 (33)

for each g value. This exponential comes from the Q.
function and appears in all the z integrals. Analytical ex-
pressions for the energy moments in the low-g limit could
not be obtained, even for the double-step case. We could
only infer that the first nonvanishing g-dependent term in
the expansion of the dispersion relation w(q) is propor-
tional to ¢ 2.

If ¢ =d =0 is considered, the bulk plasma energy w, is
recovered in the limit 7—0. The values used in the cal-
culations are summarized in Table I. The last column of
Table I is the experimental value of the monopole surface
plasmon (g =0) used in the normalization of the experi-
mental data given in Ref. 12.

In the case of Al, no polynomial approximation is
given in Ref. 12. To obtain numerical results from the
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TABLE 1. Physical parameters used in the calculations. &
and m ™ for Na, K, and Cs are obtained from the fitting of our
model [Eq. (32)] for surface plasmon and the polynomial ap-
proximation to the experimental data given in Ref. 12. The &
and m * values for Al are trial values. d is the width of the elec-
tronic step (see text). The experimental surface-plasmon fre-
quencies used in the normalization of the data reported in REf.
12 are also given.

wp(exp)
7 d E) m* (eV)
Al 2.07 1.6 1 10.3
Na 3.93 4.34 1.06 1.14 3.99
K 4.86 0.95 1.30 2.73
Cs 5.62 0.60 1.58 1.99

use of Eq. (31), a trial value of §=1.6 a.u. was used. No
effective-mass-type correction was performed.

III. RESULTS AND DISCUSSION

We have applied the method described in the preceding
section to free-electron-like plane surfaces. The first
point in question is related to the value of the 7 parame-
ter that must be used, once q is fixed, in order to calculate
the dispersion relation w(q).

Figure 1 shows the contribution to the energy of the
Coulomb [V/m;(C)/m,] and kinetic [V/'m3(T)/m,]
terms for Na at three different ¢ values, as functions of
the 7 parameter. Whereas the kinetic contribution has a
monotonic increasing behavior, the Coulomb term devel-
ops an abrupt increase for 7 approximately equal to 2g
(marked below by arrows). Though not apparent on the
scale represented in Fig. 1, the Coulomb term shows an
oscillatory behavior along the 7 axis that resembles the
structure obtained for the excitation energy of a metallic
sphere as a function of ¢,.'¢ In this last case, the peaks of
the oscillatory behavior of the energy function corre-

Energy (au )

--- g=0.05 a.u
-- g=0.15 a.u 1

Q=015 {
0 [ - L L 1 .

0 01 0.2 0.3 0.4 0.5
T(au)

FIG. 1. 7 dependence of the Coulomb (C) and kinetic (7)
contributions to the excitation energy for Na. Curves labeled C
are V/m;(C)/m, and those labeled T are V'm;(T)/m,. Three
different values of g are considered. The arrows below indicate
the place of largest slope in each case. Equation (30) is used for
the electronic profile.
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spond with the g,-quantized values that describe the bulk
modes of the system. In the planar case, the first
derivative of the total energy gives a much more accurate
evaluation of the resonant values of 7, as can be seen in
Fig. 9 (for ¢ =0.05 a.u.), which will be commented on
below (in addition to Na, results for Al, K, and Cs are
also shown). This g-dependent resonant value is the one
chosen in the determination of the energy of the modes.
In Fig. 1, a double-step density is considered [Eq. (30)],
whereas in Fig. 9 a soft profile is used [Eq. (31)]. Within
the accuracy of our numerical calculations, the resonant
value of 7 does not depend on the electronic profile for
these low g values, as is pointed out below.

As g increases, the resonant behavior becomes less and
less apparent, as the Coulomb contribution is flatter and
the kinetic term is shifted towards larger values, thus
making the structure of the total energy less pronounced
and in turn the mode less observable. This behavior
agrees with experimental results that show that the mul-
tipole modes become unobservable for values of ¢ much
smaller than the Landau damping cutoff value given ap-
proximately by g. =w, /vy =0. 90V/r, (g,=0.45 a.u. for
Na, vy is the Fermi velocity). In a TDLDA calculation of
the dispersion relation of the multipole modes given in
Ref. 12, the error bars become larger for increasing
values of g (see Figs. 6—8 therein) showing an increase in
damping, in agreement with our results.

To give an idea of the sensitivity of the resonant 7
value on the width of the step, two different values of d
are chosen to study the behavior of the Coulomb contri-
bution. Figure 2 shows that the value of 7 that makes the
most abrupt variation of the energy is the same for both
values of d (the position of the arrow is the same in both
cases). Even for d =0 (a one-step electronic profile), the
Coulomb term would show an abrupt increase in 7 and so
a multipole mode, contrary to the result obtained by Ben-
net! who found within a hydrodynamical calculation that
multipole modes are strongly dependent on the electronic
profile, and appear only for a certain value of the decay
length at the surface.

Figure 3 shows all the different contributions to the en-
ergy in order to study the relative importance of the ex-
change and correlation interactions within the local mod-

—d= 434a.u.
---d=10 a.u
0.05 4
|, . . . N
0 01 0.2 0.3 0.4 t(a.u)05

FIG. 2. Same as Fig. 1 for ¢ =0.05 a.u. for two different
values of the double-step width. The arrow below indicates the
position of the largest slope for both cases.
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=
g 0.05+ g
w
01 0.2 0.3 04 t(a.u)0S5
0. _\'
cor
-0.05} .
ex
-0.10

FIG. 3. Same as Fig. 1 for the Coulomb and kinetic contribu-
tions to the excitation energy, together with the exchange

(—4/|ms(ex)/m,|) and correlation ( —V/|m;(cor)/m,|) terms

as functions of 7. Equation (31) is used for the electronic profile.

el used [Egs. (26) and (27)]. For 7=0.1 a.u., the exchange
term is about 13% of the Coulombic plus the kinetic con-
tributions, whereas the correlation term is only about
4%. Both terms are negative [the values presented in
Fig. 3 are —V/|m,(ex)/m | and —V/|m;(cor)/m,]|, re-
spectively] and tend to lower the slope of the dispersion
relation in a similar way as was previously reported for
bulk plasmons (see Ref. 17). If nonlocal effects are con-
sidered in the exchange term, its contribution to the
Coulombic part decreases but still produces a lower
slope.?® The inclusion of exchange and correlation makes
the Coulomb interaction weaker, the electrons freer, and
decreases the necessary energy to create a plasma oscilla-
tion. Equation (31) is used for the electronic profile.

To study the dependence of our results on the metallic
density, in Fig. 4 a comparison between the dressed

FIG. 4. Dressed Coulomb

(V/[m;(C)+m;(ex)+m;(cor)]/m,)

and kinetic (the same as in Fig. 1) contributions to the excita-
tion energy as functions of 7 for four different metals. The
Coulombic term for Al is off the scale and crosses the kinetic
branch for 7 larger than 0.5 a.u. The arrow below indicates the
position of the largest slope, the same in all cases.
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Coulomb  (V/[m;(C)+ms(ex)+ms(cor)]/m,) and
kinetic contributions for Al, Na, K, and Cs for a fixed
value of ¢ =0.05 a.u. is shown. The dressed Coulomb
contribution of Al lies off the scale (it is about 0.45 a.u.)
and crosses the kinetic branch for 7 larger than 0.5 a.u.
It is clear from the figure that the structure of the total
energy is washed out as r; is increased, as the cross point
of the Coulombic and kinetic branches decreases, and the
Coulomb contribution becomes flatter. This behavior
again agrees with the tendency shown in the electron-loss
spectra given in Ref. 12 (see Fig. 5 therein). The peak of
the multipole mode is much less apparent in the Cs case
than it is in Na or K. The transition from a collective to
a single electron-hole excitation is related to the increas-
ing contribution of the kinetic energy to m and so to the
position of the cross point of the Coulomb and kinetic
branches, which decreases for higher r, values. However,
according to the above, Fig. 4 would predict the observa-
bility of multipole modes in Al, in contrast to experi-
ments. This point will be discussed in the last section.

Figure 5 represents the dispersion relation for Na
within a calculation that excludes exchange and correla-
tion interactions and its aim is to compare the results ob-
tained from the use of Eq. (30) (full line) and Eq. (31)
(crosses). We also added the experimental data taken
from Ref. 12. As was previously pointed out, there is a
negligible dependence of the results on the details of the
electronic profile for these values of g.

Figures 6—8 collect the full calculation [including ex-
change and correlation terms and using Eq. (31) for the
electronic profile] of the dispersion relation for Na, K,
and Cs (full curves). The best fit with experimental data
takes place for K as was previously the case for monopo-
lar surface modes.!” The TDLDA results reported in
Ref. 12 are also given. The bars in the figure indicate the
uncertainty of these results. The extrapolation to ¢ =0 of
our numerical calculation gives a value of

W
(a.u.)
019 +
0.18‘r
| |
1 i
=
| - i
017 F " =
I ] L 1 1
0.01 0.03 0.05 0.07 0.09
q(a.u)

FIG. 5. Dispersion relation of multipole modes for Na. The
solid line is obtained using a double-step profile [Eq. (30)] and
the crosses using the soft profile [Eq (31)]. Exchange and corre-
lation interactions are not included. Experimental data taken
from Ref. 12 are also given (squares).
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0.02 0.06 0.1 0.14 (A"

w T T T T ]
(a.u.) | (eV)
0.19 T J 52

i
1 l}
|
‘ | 450
0.18
448
017 F I <46
1 L 1 1 —
0.01 0.03 0.05 0.07 0.09
qlau)

FIG. 6. Dispersion relation of the multipole plasmon modes
for Na including exchange and correlation effects and using Eq.
(31) for the electronic profile. Experimental data from Ref. 12
are included (squares). The vertical lines denote the results of
the TDLDA calculation from Ref. 12. The dot at ¢ =0 is the
extrapolated plasma frequency in the TDLDA calculation.

Wp
w=——a, (34)
Vim*
where m * is the effective electronic mass and a =0.84 is
independent of the metal, in excellent agreement with ex-
perimental findings.

As one moves from Na to Cs, the TDLDA results be-
come better than the SR results. The reason lies in the
nature of the SR method in which an average evaluation
of the response function is implicit. As r, increases, the
electron-hole contribution to the average becomes more
important as a consequence of the relative increase of the
kinetic term as was discussed previously (see Fig. 4). The
presence of electron-hole excitations lowers the average
energy. Due to the energy factors in the SR [see Egs. (3)
and (8)], the high-energy collective state continues to ex-
haust the m; SR also at relatively high g, but not the m,
SR, which begins to take contributions from single-
particle excited states and then E; becomes lower than
the TDLDA value.

Finally, Fig. 9 shows the first 7 derivative of the total

" 0.02 0.06 01 0.14 (A7)
, , . ;
(au)
/ (eV)
13.4
132
0.11 LN,___L, — 11 J30
0.01 0.03 0.05 0.07 0.09
q(a.u)

FIG. 7. Same as Fig. 6 for K.



50 MULTIPOLE SURFACE-PLASMON MODES ON SIMPLE METALS

0.02 0.06 0.1 014 (A"
. ; ; ; ;

Jar
(eV)
I 125

. 1 1 1 1

008 501 0.03 0.05 0.07 0.09

q(a.u)

FIG. 8. Same as Fig. 6 for Cs.

energy which develops a pronounced peak for 7=2g,
nearly independent of the metal. Contrary to the findings
of some previous works!?”?8 that suggest that the mul-
tipole mode is a trapped standing wave inside the surface
layer and therefore strongly dependent on the width of
the surface region as a consequence of the matching con-
dition, 7 (and its associated wavelength A=27/7) is main-
ly determined by the localization of the operator Qm?
around z =0 determined by ¢ in the exponential e —q%*,
There are some arguments that support this observation.
One is related to the behavior of the electronic-density
fluctuation related to a multipole mode. In Ref. 12, the
density distribution for »,=5 a.u. and ¢4 =0.06 a.u. ex-
tends over a distance of about 16 a.u. on the z axis, while
for this value of r; the width of the surface region would
be about 4 a.u. The other argument refers to a conse-
quence of sum-rule calculations in that a relationship is
established between the operator Q and the electronic-
density fluctuation, which is, to first order in Q, given by
Eq. (22),

n,(r)=—v(nvQ), 35)

where n is the g.s. density. This relation gives to the n,
function the same exponential dependence on z, that is to
say, the plasma oscillation is localized in a region deter-
mined by ¢g. There is, however, a residual dependence of
7 on the metal that augments as g increases, thus making
the localization region and the surface width comparable.
The matching condition on 7 determined by the width of
the surface would give a constant value of 7 for all g mo-

0.1 0.2 0.3 0.4 0.5
t(a.u)

FIG. 9. First 7 derivative of the excitation energy for four
different metals as a function of 7. Exchange and correlation
terms are included and a soft electronic profile is considered

[Eq. 31)].
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menta and within a sum-rule calculation, it would pro-
duce a negative slope for the dispersion relation.

There are more resonant peaks for larger values of 7
for a fixed g, however, they lie in the unobservable region
due to the high value of the kinetic-energy contribution.
Actually, the experimental values correspond to the first
quantized value of 7 (the one in Fig. 9). It is due to this
quantization on the momentum along the z direction that
makes it possible to obtain the dispersion relation of the
multipole modes from inelastic-electron-scattering exper-
iments in the reflection mode of Ref. 12 as there is no
momentum conservation in the z direction.

IV. CONCLUDING REMARKS

An alternative study which clarifies some aspects of
multipole collective modes in metal surfaces is presented.
The interplay between Coulomb and kinetic energies al-
lows us to predict under what circumstances these modes
might be observable. The Coulomb contribution devel-
ops resonant behavior for discrete values of the z-
direction momentum. This resonant structure is washed
out by the kinetic contribution for increasing g values
smaller than the Landau damping cutoff. For a fixed g,
only the first quantized mode turns out to be observable.
The resonant z-direction momentum is approximately
equal to 2q for low g values and is increasingly dependent
on the surface profile as its associated wavelength be-
comes comparable to the surface size. Exchange and
correlation effects reduce the slope of the dispersion rela-
tion due to the weakening of the Coulomb interaction.

The fact that in the case of Al experimental data do
not show multipole modes means that further
modifications to our calculations must be made in order
to account for the probability of excitation of these
modes. In Refs. 7 and 8 the imaginary part of the cen-
troid function d (w) directly related to the probability is
obtained. This function develops a resonant structure at
the multipole frequency, which decreases for denser met-
als. This tendency competes with the increasing resonant
structure shown in Fig. 9. Considering that a simple met-
al in our model is characterized by three parameters r, 5,
and m*, everything tends to suggest that the softening of
the electronic profile at the surface produces an effective
strong damping mechanism that extinguishes the mode.
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APPENDIX

In this appendix we summarize the formulas obtained
for m; and m; using the operator Omp [Eq. (29)] for an
arbitrary electronic density n(z). The expressions are
given per unit area in the XY plane. From a dimensional
analysis, we have incorporated the effective electronic
mass m* to the energy expression V'my/m, and have
assigned it to the m; term. We obtain
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m,= f:odz e_Zqzzz{n[q2+1'2+4q422][cos(27'z)+1]+n'rsin(27'z)] , (A1)

1 o —1,2,2 .
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+f’f%f_:dz f‘zwdz'n (z)n(z')e*qz‘zzhlz)e_‘“Z'z')

X {27q sin[1(z —z")][q(z —z')+1]—27¢?sin[r(z +2"))(z +2")

+cos[r(z —z")l[g*— 1 —4q*zz' +2q°(z —z') +cos[T(z +2')][¢>+ T2 —4q 2z’ +2¢°(z —2')]} , (A3)
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