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We present a theory and Monte Carlo simulations of adsorbed particles on a corrugated substrate.
We have focused on the case of rare gases and light molecules, H, and D,, adsorbed on graphite. The
competition between the particle-particle and particle-substrate interactions gives rise to frustration phe-
nomena. From our model predictions for the epitaxial rotation angle of the adsorbed phases are deter-
mined. Our results extend and unify previously known descriptions. We have studied as a function of
temperature and coverage the phase diagrams, especially the intermediate phases appearing between the
commensurate and incommensurate phase for the adsorbed systems. From our simulations and our
theory, we are able to understand the y phase of D, as an ordered phase stabilized by disorder. It can be
described as a 2g-modulated structure. In agreement with the experiments, we have also found a modu-
lated 4 X4 structure. Energy, structure-factor intensities, peak positions, and epitaxial rotation angles as
a function of temperature and coverage have been determined from the simulations. Good agreement

with theory and experimental data is found.

I. INTRODUCTION

In the last two decades, considerable effort has been de-
voted to understanding the properties of matter in two di-
mensions. Several theories have been developed!? which
predict a dramatic difference between phase transition in
two-dimensional (2D) and three-dimensional (3D) sys-
tems. One of the major problems in testing existing
theories is that very few experimental systems are really
2D. Apart from measurements on liquid-crystal films,’
most of the systems studied are surface layers on solid or
liquid substrates.? Thus, it is important to study the role
of the perturbing substrate on the 2D physical properties.
A related problem, intensively studied in recent years, is
frustration. Frustration is usually associated with an in-
compatibility between the topology of the system and the
interactions. For instance, antiferromagnetic ordering
cannot classically be uniquely established on a fcc lattice.
In this case quantum or thermal fluctuations can select a
stable ground state among the large number of classically
degenerated ones.* Another example, still not fully un-
derstood, is the nucleation of a compact (fcc or hexago-
nal) phase in a bce phase, which occurs at the martensitic
phase transition.” Such phase transitions occur in a large
number of pure metals, metallic alloys, and ceramics. In
this case, the frustration arises from the incompatible
symmetry of the two phases.

In this paper we demonstrate that perturbed 2D sys-
tems also exhibit frustration, though different from that
described above. Examples of such systems are adsorbed
atoms or molecules on crystalline surfaces,® and the lay-
ers in the intercalated compounds.” The particles of the
2D layer interact through different kinds of particle-
particle potentials: Metallic ions with a screened
Coulomb interaction, rare gases with Van der Waals
forces, etc. The particles interact with the substrate (or
with adjacent layers, in the case of intercalated com-
pounds) with a potential that we can consider to have two
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parts: (i) an attractive binding force between the ad-
sorbed particles and the substrate, which depends upon
the distance of the particles from the substrate, and (ii) a
corrugation potential having the translational symmetry
of the substrate, which depends upon the horizontal posi-
tion of the particles. At high temperatures the 2D liquid
phase consequently shows modulations with the substrate
symmetry and the corrugation potential can be measured
via the structure factor.® At low temperatures, and for a
range of coverages, the particle-particle interaction pro-
duces a structure incompatible with that which mini-
mizes the corrugation potential energy. This gives rise to
frustration. We distinguish two cases: (i) the optimal ad-
sorbate structure has a different symmetry than the one
imposed by the substrate, for example, rare gases which
prefer a close-packed structure adsorbed on the square
lattice of MgO(100) (Ref. 9); (ii) the two structures have
the same symmetry but different lattice parameters. We
will focus on the latter case, paying special attention to
the systems with hexagonal symmetry, such as the light
molecules (H, and D,), and the rare gases adsorbed on
the graphite basal plane. Our theory can also be formu-
lated for case (i) and is expected to yield similar con-
clusions to those discussed below.

Detailed experimental measurements of 2D-systems’
phase diagrams exist as a function of the temperature and
coverage (i.e., density) of adsorbed particles. Accurate
phase transition lines have been measured by
calorimetry.'"13 Also the structure of different phases
has been determined using diffraction techniques, includ-
ing x-rays,'# transmission high-energy electron diffraction
(THEED),!® low-energy electron diffraction (LEED), 617
and neutron diffraction.!® At low temperatures, and as a
function of increasing coverage, from zero to completion
of the first monolayer, these phase diagrams exhibit at
least the following sequence of phases: fluid, a coex-
istence region, a commensurate phase, and an incom-
mensurate phase. The commensurate phase is, for the
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cases in which we are interested, the V'3 X V'3 phase for
which the preferred distance between the particles is V'3
times the graphite lattice spacing.

The existence of frustration in the system manifests it-
self in two interesting phenomena: (i) the epitaxial rota-
tion exhibited by the incommensurate structure,'® and
(ii) the appearance of intermediate phases between the
commensurate and the fully incommensurate struc-
tures.?’ Our main objective is to develop a model and to
perform Monte Carlo (MC) computer simulations in or-
der to clarify these two points.

Epitaxial rotation is a general phenomenon resulting
from the interactions between two incommensurate struc-
tures. It optimizes the particle-substrate interaction.
Several theories,!® based on the elastic properties of the
adsorbate and substrate, have been developed to explain
the epitaxial rotation angle as a function of the misfit be-
tween the two structures. These have successfully de-
scribed the epitaxially rotated and nonrotated phases,
and the transition between them for heavy rare gases ad-
sorbed on graphite. However, a number of experimental
results corresponding to the lighter atoms or molecules
[D, (Ref. 18), Li/Rb (Ref. 21)] do not fit into the picture
of the existing theories. We will try to provide an ex-
planation for these cases.

The nature of the transition between the incommensu-
rate and commensurate phases and the existence of disor-
dered or complicated ordered phases in the intermediate
region is still under discussion. On the basis of a study of
all the possible commensurate structures (coincidence lat-
tice theory®?) and different 1D theories,?>?* it has been
proposed that a devil’s staircase may appear.”” In the
case of light particles adsorbed on graphite, indications of
several intermediate phases have been mea-
sured.!®12131L17 Byt their real-space structure is, in
some cases, unknown. In general, they exhibit epitaxial
rotation angles in disagreement with the existing
theories.!®

In the conventional description of adsorbed mono-
layers, the problem is simplified to a domain competition
between the three equivalent registered 4, B, and C
domains. And the behavior is determined by the
domain-wall energy. We have found that this picture
breaks down in the high-density regime, since there such
“registered domains” are exceedingly small (sometimes
just one particle) and most of the system consists of
“domain walls.” These walls are, furthermore, strongly
relaxed. This makes it also difficult to use the Moiré pat-
tern argumentation. Generally, we shall by a domain
mean a region of a single phase. Thus, for example, one
domain of the 4X4 structure consists of many one-
particle A4, B, and C registered domains. Instead of
domain, we will sometimes use the word ‘““grain” in order
to reduce the possibility of confusion.

We will concentrate primarily on the case of D, and H,
on graphite, for which extensive experimental data exist.
Calorimetric measurements'>!> have revealed the ex-
istence of intermediate phases between the commensurate
and the fully incommensurate phases. Some of these are
not fully understood. The existence of and nature of a
striped a phase is still under discussion,'®!"2¢ and so is
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the nature of the ¥ phase. This phase exhibits a surpris-
ingly large epitaxial rotation angle.!”?¢ A further modu-
lated € phase within the y phase, detected by the
specific-heat measurements, has not been revealed by the
scattering data.!> The structure of these phases is un-
known because it is difficult for the scattering experi-
ments to access the region of large wave vectors and to
obtain data which is not averaged radially (due to the
lack of single-crystal measurements). *He on graphite!! is
another system which exhibits intermediate phases.

The paper is organized as follows. In Sec. IIA we
present a model describing a hexagonal adsorbate on a
rigid hexagonal substrate. In Sec. IIB we discuss the
particle-particle interaction between the adsorbed parti-
cles in our model. In Secs. II C and II D we analyze the
influence of the deformations and the finite size of the ad-
sorbate on the epitaxial rotation angle. In Sec. III A we
present the details of the MC simulations. The choice of
parameters for the case of D, and H, on graphite is dis-
cussed in Sec. III B. In Sec. III C we present our MC re-
sults and compare with experimental results. Finally,
Sec. IV summarizes and concludes.

II. THEORY

A. Model

Let us consider a system of N particles adsorbed on a
hexagonal substrate with lattice parameter a. There are
N; lattice cells. The coverage is defined as p=3N/N,.
Since we are interested in the phase diagram for cover-
ages less than a complete monolayer, we will only consid-
er the projection of the particle positions on the sub-
strate. The projected 2D Hamiltonian H is defined as

—pyl3d
H=—kBT1n[fdzl“'dz,-'--dzNe e ) (1)

where z; represents the z component of the ith particle on
the substrate and H>¢ is the nonprojected Hamiltonian.
Let r; be the 2D vectors describing the projections of the
particle positions on the substrate plane. We assume that
the Hamiltonian for the projected variables can be split in
a term (H,) containing the particle-particle pair interac-
tions and another term (H,) containing the substrate-
particle interaction
pairs N
H=Hy+H,= ¥ Vir;)+ JU(r;), (2)
ij

i

where r;;=r;—r;. For H,, D,, and the rare gases, over
the range of temperatures in which we are interested, it is
a good approximation to assume that the particle-particle
interaction 1is isotropic V¥ (r)=V(r). The particle-
substrate potential interaction U can be Fourier expand-
ed as

Ur)= Uyge 3x™ (3)
HK
where Qg are the reciprocal-lattice vectors of the sub-

strate. The Uy, term represents the average adsorption
energy per particle. It keeps the particles on the sub-
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strate. If the coverage is constant, Uy, does not influence
the phase transitions between different, planar, ordered
structures. For symmetry reasons, a number of terms are
equal. For instance, U,,=Uy =U,_,=U_;;=Uy_,
=U_,, correspond to the six equivalent reciprocal vec-
tors of the substrate lattice: Q, Qo1> @1—1> C@—11> Co—1>
and Q_ ;. We will call this set of reciprocal space posi-
tions the (1,0) star, Q},. As a first approximation to the
problem it is assumed that U,, is much bigger than the
subsequent terms, like U,;; belonging to Qf,. For the
case of light molecules adsorbed on graphite, this is a
good approximation. In the case of heavier atoms or
molecules strongly chemisorbed on the substrate, like Rb
on graphite, the higher-order terms have been measured.
Even in that case, the values are fairly small
U, ~0.1U,,.7
We define the structure factor of the system S(q) as

N iqr.
S@=Ipl?, pa=3 "7 . (@)
j=1

Using these definitions the Hamiltonian (2) can be
Fourier transformed, yielding

H=H,+H,
= [[S(@)—N1P(g)dq
+ [ @) S Upk8(a—Qux)da, 5)
HK

where f>(q) is the 2D Fourier transformation of V(r),
which will be further discussed in Sec. II B. In general it
is an oscillating function which decays with increasing g
(Fig. 1). Therefore, only the small wave-vector region of
S(q) will be important. Equation (5) shows that the
present problem represents a particular case of frustra-
tion. Namely, a competition between the particle-
particle interaction H,, which is an integral continuously
extending in all the reciprocal space, and the particle-
substrate interaction, which is an integral of a set of &
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FIG. 1. Fourier transform P(gq) of the particle-particle in-

teraction used in our simulations. The arrows indicate the posi-

tions of the reciprocal vectors corresponding to the perfect hex-
agonal lattice with ¢, =4m/(V3r,).
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FIG. 2. The reciprocal lattices of the adsorbate and the sub-
strate, and the definition of the epitaxial rotation angle ¢.

functions at the discrete vectors q= Qg .

In the thermodynamic limit (N—o, N;— 0,
N/N;=p/3), and at low temperatures, a perfect hexago-
nal structure for the adsorbate minimizes the particle-
particle energy. For this S(q) has a infinite number of
equal intensity Bragg peaks at the reciprocal-lattice vec-
tors qp,. If the structure is incommensurate
|qui |7 1Qpk |, there will be no contribution from the
particle-substrate energy. Therefore, the system will be
(continuously) orientationally degenerate. The relevant
experiments on adsorbed monolayers are close to the
commensurate V'3 X V'3 structure (i.e., |q;ol ~ Q0| /V'3).
We will focus on this case. We define the epitaxial rota-
tion angle ¢ as the angle between q;; and Q,,. Hence
¢=0 for the commensurate V'3 XV 3 structure. Figure 2
schematically represents the first two reciprocal-space
cells of the substrate, indicating the positions of a number
of substrate (Q,;) and adsorbate (qy;) reciprocal vectors
and the definition of ¢.

Elastic deformations, defects, or finite-size effects will
produce diffuse scattering extending S(q) and p(q) in all
reciprocal space, thus always giving a nonzero value of
H,. This value, regardless of its magnitude, breaks the
infinite degeneracy of the ground state and selects an ap-
propriate epitaxial rotation angle ¢. The destruction of
the perfect hexagonal adsorbate structure results from
the competition described by Eq. (5). Energetically small
contributions are responsible for the rotation of the
whole system, making it difficult to develop theories for
the epitaxial rotation in complete agreement with experi-
mental results. In 2D there is additionally the interesting
phenomenon that true long-range order does not exist.?

B. Particle-particle interaction, V (r)

In order to further proceed, the main characteristics of
the projected interaction V' (r) between the adsorbed par-
ticles on the substrate must be analyzed. The systems of
rare gases are, in 3D, well described by the 6-12
Lennard-Jones potential
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Viy(r)=4e{(o/r)?—(a/r)} , (6)

where o and € are parameters. Thé potential shows an
infinite repulsion as » —0, preventing an overlap of parti-
cles, and it has a minimum at r, =2v64. For the molecu-
lar systems H, and D,, a Lennard-Jones interaction has
been useful describing the 3D phase diagram at low densi-
ties.?? After the projection to 2D, we expect that the po-
tential will still exhibit a minimum at an approximately
similar distance (ry) as in the 3D case. However, the
infinite hard-core repulsion will be smoothed since the
particles at small distances can escape to the third dimen-
sion by jumping to the second layer at only a finite cost of
energy. This justifies the introduction of a cutoff at short
distances r <r,.

In our MC simulations, we have used the following
modified 2D Lennard-Jones potential

Vo ifr<r,
d4e{(a/r)?—(a/r)%} if ri<r<r, N
0 ifr>r,

Vir=

with 7, =2V"3a /3 and r,=5V'3a /3.%° For the range of
temperatures and coverages in our investigation, we have
tested that the r; cutoff is irrelevant (i.e., no jump at-
tempts have been accepted to the flat V|, region; this en-
sures that no particles occupy the same substrate well).
The effect of the long distance cutoff », is mainly a shift
in the energy, which has been discussed in a previous pa-
per.°
The Fourier transform of ¥ (r) is in 2D

Vig)= foer(r)dr fozﬁe"‘”mede

2 0
== 174 dr , 8
fo rV (r)Jo(qr)dr (8)

where J,(x) is the zero-order Bessel’s function. For a po-
tential V' (r)~1/r" to be integrable, it is required (i) that
it diverges more slowly than or at the same rate as 1/7,
when r—0 and (ii) that it decreases more rapidly than
1/r"3 when r— . For the projected potential, we have
supposed that V(r—0)—V,, where V is related to the
energy required for the promotion of the particles to the
second layer. This ensures convergence in case (i). Fur-
thermore, at large distances the 6—12 potential satisfies
condition (ii).

Potentials with a hard-core finite cutoff [V (r)=V, for
r <r;] will exhibit minima in ﬁ(q). However, if Vj— oo,
the position of the first minimum will be at g,
=35.136/r,, independent of the behavior of the rest of the
potential. For finite values of ¥, the position of q;, is
determined by both the cutoff », and the position of the
minimum of V(r) at r,. An example is shown in Fig. 1,
where the Fourier transform of the potential in Eq. (7) is
displayed for typical parameters used in our simulations.
We see that the first minimum of ?(q) is displaced to
smaller values of ¢ than that corresponding to the
minimum of V(r) [go=(47w/V3)rg']. The shift in the
minimum of P(g) is due to both the existence of the
cutoff 7;, and to the fact that the structure factor S(q)
minimizing the energy exhibits a set of 8 functions, so the
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other minima of P(g) must be taken into account in the
integral in Eq. (5). At high temperatures, the Bragg
peaks of the structure are smeared out due to disorder, in
particular for large values of q. The average energy is
then determined principally by the first Bragg peak at
(|qol), and an energy minimum is obtained when the po-
sition shifts from g, to g;,. This gives an explanation
for the expansion of the lattice for increasing tempera-
tures.

C. Deformations of the system

As shown in Sec. II A, for a perfect, incommensurate,
hexagonal adsorbate, there is no contribution from the
particle-substrate potential, so no preferred epitaxial ro-
tation angle is selected. Let us now suppose that the ad-
sorbate lattice is distorted. This may arise from tempera-
ture fluctuations, defects, local elastic relaxations,. . . .
The positions of the particles are given by r;=R;+u,,
where R; corresponds to the positions of a perfect hexag-
onal structure and u; to the displacements. For small
distortions, p(q) [Eq. (4)], can be, classically, expanded to
first order as
q°R

N iqR,
pPl@=py(q)+i X que I+ 9)

ji=1
We express the distortion field as a combination of
waves

w;= [dq Alge™™ (10

where the integral extends over the first Brillouin zone of
the adsorbate reciprocal lattice {g,,} and A(q) is the
complex vector amplitude exhibiting different sym-
metries, depending upon the physical mechanism that
produces the distortions. In general, if the displacements
field u(R, )=u, is invariant under a rotation R % A(q) is
also invariant, i.e.,

uw(R°R)=R%(R)<=A(R%)=R?A(q) . (11)

Note, that since R={R;}, only rotations RY that are
symmetry operations of the perfect adsorbate lattice are
allowed. Since the displacements u; are real, we always
have

A(qQ)=[A(—q)]*. (12)

We now calculate the contribution to the particle-
substrate energy H, using Egs. (9), (10), and (5),

H,=U, ¥ pQ)
QEQj,

=iNU;;, 3 Q' A(qy—Q), (13)
QeQf,

where q,, is the reciprocal vector of the perfect adsor-
bate which is closest to Q [in our case q,, =q,;, for
Q=Q,, and the corresponding symmetry related rela-
tionships for the other members of the (1,0)-star]. We
denote by 8q any element of the set of six vectors q,; —Q
with QE QY. Since H, is real, we have o
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A(8q)=— A(—8q) (14)

which, according to Eq. (11), implies that the expansion
of the density in Eq. (9) only makes physical sense if there
is an inversion symmetry point in the displacement field
u(R;). Note in Eq. (13) that predominantly the com-
ponents of the distortion amplitudes parallel to the sub-
strate reciprocal lattice contribute to the energy. For
symmetry reasons we expect this property to persist even
for expansions to higher order in u;. The exact minimi-
zation of H,+ H |, required for calculating the epitaxial
rotation angle, is difficult, but symmetry considerations
about the vector amplitude A(8q) lead to a determina-
tion of the preferred orientational angle. We distinguish
two cases.

(a) If the distortions are governed by the elastic behav-
ior of the adsorbate, the function A(8q) will be deter-
mined by the phonon frequencies w(q). | A(8q)| will
show a starlike shape with maximum values oriented ac-
cording to the direction of the softest branch. Usually, it
is the transverse branch with 8q||q7,.

(b) In the low-coverage regions, around defects (vacan-
cies, for instance), the particles will relax toward the sub-
strate wells according to the substrate potential force,
QR

QeQf,

Such a perturbation will produce nonisotropic deforma-
tions around the defects, oriented according to the sub-
strate symmetry.3! In this case, the maximum amplitude
will occur for 8q||Q7o.

Figure 3 shows the different geometries of cases (a) and
(b). For consistency, we also show two other cases, (c)

FIG. 3. Schematic representation of the four possible rela-
tions for the epitaxial rotation angle. The dashed-dotted lines
represent the main symmetry directions of the diffuse scattering
around the q;; Bragg point. Case (a) corresponds to the usual
elasticity mechanism, (b) corresponds to the vacancy stabiliza-
tion mechanism, and (c) and (d) are plotted for completion. In
cases (b) and (d), the orientation of the dashed-dotted star does
not change when rotating the adsorbate on the substrate, while
in cases (a) and (c) it rotates with the adsorbate lattice.
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and (d), corresponding to A(8q) having maximum inten-
sity for 8q||q}; and 8q||Q};, respectively, although no sim-
ple physical explanation can be given for these cases at
this stage. (Later we will analyze how these possibilities
can appear from other mechanisms.)

Minimization of the particle-substrate energy in Eq. (5)
for these four cases gives the following relations between
the misfit m =v'3q,,/Q o, and the epitaxial rotation an-

gle ¢,
_ tanf3
cosd tanB—sing ’

with the four possibilities =30°+¢, 60°, 60°+ ¢, and 30°
for cases (a), (b), (c), and (d), respectively. The epitaxial
angles determined by these four relations are shown in
Fig. 4. It is interesting that these conditions were found
by Grey and Bohr?*? by phenomenological considerations
of Moiré patterns and by making use of a symmetry prin-
ciple. Here we demonstrate that they naturally arise, as-
suming the model in Eq. (1). The tendency for the diffuse
scattering coming from the distortions to be aligned with
respect to the Qf, [case (b)] was already pointed out in
connection with measurements of D, on graphite.!’

The unrotated solution ¢ =0 must also be considered.
In fact, case (c) is always metastable relative to the unro-
tated solution, since, from elastic considerations, we ex-
pect that | A(8q)| decays monotonically with |8q| and
the unrotated solution represents a smaller value of |8q|.
The solution (b), based on the defect mechanism, is also
metastable relative to the unrotated solution if | A(8q)|
decays monotonically. On the other hand, if the defects
form any kind of superlattice, the monotonic decay can-
not be assumed.

(16)

30
c N-M
b

20 -
™ a
[0]
o
[}
(0]
o
~ d
©

10 —

0 | I

1.00 1.25 1.50 1.75
MISFIT (m)

FIG. 4. Display of the (a), (b), (c), and (d) relations for the ep-
itaxial rotation Eq. (16), together with the Novaco-McTague re-
lation (Ref. 19) for a Lennard-Jones adsorbate.
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The results of Eq. (16), as shown in Fig. 4, reproduce a
number of experimental measurements of ¢ obtained by
changing the adsorbate coverage and the temperature
(thus the misfit) for different systems: the rotated incom-
mensurate phase of Ar,>* D,, H,, and HD (Ref. 17) on
graphite, and Na on Rb,?! is described by Eq. (16) for the
case corresponding to stabilization by elastic deforma-
tions [case (a)] and Ne on graphite,'® Li on Rb,?! and the
intermediate phase of D, on graphite!” is described by the
case corresponding to stabilization due to local deforma-
tions around defects [case (b)]. Some of this data was
presented in support of the symmetry principle.’?> Phases
with an epitaxial rotation angle stabilized by defects only
appear in the case of light particles (D,, Ne, Li) for which
the preferred distance between the particles is sufficiently
small compared to the V3X V3 structure. As will be dis-
cussed in Sec. III B, the preferred distance between H,
molecules is larger than that between the D, molecules
due to the quantum zero-point motion. The change in
parameters [in Eq. (5)] has the consequence that H, does
not exhibit intermediate phases with the epitaxial rota-
tion angle stabilized by defects, as it is the case for D,.

The present theory for epitaxial rotation unifies some
previously known descriptions. Case (a) is an approxima-
tion to the well-known Novaco-McTague-Villain-Shiba
theory,'” which has been successfully applied to Ar, Kr,
and Xe atoms adsorbed on graphite. For these systems,
the corrugation is smaller and the preferred distance
closer to the V3X V3 structure. However, it does not
explain some of the phases that appear in phase diagrams
of the lighter molecules. The theory explicitly derives the
position of the maximum value of A(8q) for different
systems having different values of the transverse (c;) and
longitudinal (c;) elastic constants. The maximum de-
pends on the parameter 7=(c; /cy)*—1. In Fig. 4 we
plot the prediction of their theory for n=2, which corre-
sponds to a Cauchy solid, as exemplified by the presently
discussed Lennard-Jones system.

Case (b) suggests a hitherto neglected possibility for a
defect-stabilized epitaxial rotation angle. In the next sec-
tions we will show that this provides an explanation for
some intermediate phases appearing in the phase dia-
grams for D, and “He adsorbed on graphite. In fact, the
relation (b) can be derived from a further development of
the theory of Reiter and Moss® for corrugated modulated
liquids. They show that the first ring in the liquid-
structure factor S(g) is modulated in a way that the q,q
peak appears. If the misfit m > 1, the position of the
peak q,q arises from the overlap of the first ring with the
one centered at Qo fulfilling |q,0l =1q;,—Qyol. This
condition is identical to the relation (b) (q;;—Q;0)||Qo;-
Since a liquid ring also appears centered on the Qy, posi-
tion, the stabilized structure factor shows both q;, and
qjo peaks corresponding to the equivalent +¢ and —¢
rotation angles. We characterize this as a 2¢g-modulated
structure in contrast to the structure stabilized from rela-
tion (a) in which the two peaks q,, and qj, appear from
the coexistence of different single-q domains, i.e.,
domains of structures characterized each by only one
principal wave vector.
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Our results are derived for structures close to the com-
mensurate V'3 X V3 structure for which Q,,=q,,. They
can be generalized to other cases of misfit. The stabiliza-
tion of other perfect commensurate structures, for which
there is an exact match between Q,, and other q,, has
been carefully studied by the so-called coincidence lattice
theory.”? This theory yields a set of discrete possible
values on the (m,¢) diagram for which q;; =Qpyx. These
values fall on lines similar to those shown in Fig. 4. Most
of these structures, for the range of misfits considered
here, can only be stabilized by assuming that the sub-
strate potential has large contributions from other terms
than U, usually Uy for very large values of H and K.
However, in our simulations we have found agreement
with a “semicoincidence” lattice theory, in which it is
enough that the projection of any Bragg peak q,;, in a
high symmetry direction equals the projection of Q.
We could also call this a case of an uniaxially incom-
mensurate phase. The stabilization of such a phase can
be justified from finite domain size effects, as we will show
in the next section.

D. Finite-size effects

The selection of the epitaxial rotation angle is sensitive
to any mechanism that yields diffuse scattering around
the main Bragg peaks. We must therefore also consider
the effect of the finite size and shape of the adsorbate
regions—either islands or grains. The island case has
previously been studied numerically by Grey and Bohr3?
for selected hexagonal shapes. The theory underlying
this is discussed below, on the basis of Eq. (5).

Let S;(r) be a shape function that takes the value 1 in
the region covered by a uniform adsorbate with perfect
structure, and O outside this region. p(q) for a finite hex-
agonal adsorbate can be written as

pla)= [S,(a)p.qa—q)dq , (17)

where p,,(q) corresponds to the infinite adsorbate and
S f(q) is the Fourier transform of S,(r). Substituting Eq.
(17) into the Hamiltonian Eq. (5), we obtain the following
expression for the particle-substrate interaction:

H,= [p(@)3 UyxS;(q—Qpx)dq . (18)
HK

Comparison with Eq. (5) shows that the finite size of
the crystal destroys the &-function-like peaks of the
particle-substrate interaction. Of the infinite number of
adsorbate Bragg peaks qy, the one which is closest to
Qo is q;; for the case in which we are interested, so we
can approximate

H1:6UIOSf 41— Qo) - 19

In this equation there is an implicit minimization with
respect to small displacements of the center of adsorbate
region inside a substrate umt cell. Such translations pro-
duce a phase change of the s  function. It can be shown
that there exists a phase for which H, takes the optimum
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value equal to that of Eq. (19).

In general, the energy per area H, /8 +(0) is an oscilla-
tory function changing very qulckly with the size R and
orientation of the adsorbate region. It decays like
1/(|86q|R)?%. Thus, we conclude that the epitaxial rota-
tion angle is completely dominated by finite-size effects if
R $1/|8q|. We start by considering the effect of a finite
circular domain. The function S f(8q) is in this case, in-
dependent of the orientation of q. From Eq. (19) we ob-
tain

H,=12Uo(7R*) [5aIR

where R is the radius of the region and J, is the first-
order Bessel function. A geometrical analysis yields the
following relationship between |8q|, the misfit m, and the
epitaxial rotation angle ¢:

Q]o'

) (20)

18ql=1q;;— 47T \/m —2mcosp+1 . 1)
Substituting this into Eq. (19), and minimizing with
respect to ¢ for different values of m and R, allows the
determination of a preferred orientation due to finite-size
effects only. Figure 5 shows an example for the case
R =10a. We see a set of intervals where the systems
prefers to be unrotated, and discrete jumps to different
rotated branches. For increasing radius, the density of
jumps and their height increase, covering all the (m,¢)
space as R — oo. This indicates that no epitaxial rotation
angle is preferred for the infinite, perfect, fully incom-
mensurate structure. These results may explain some re-
cent experiments for Xe adsorbed on graphite'* in which
first-order-like transitions (with hysteresis) have been seen
between nonrotated and slightly rotated branches with a
curvature similar to that observed in Fig. 5.

When the regions are not circular, more complicated
phenomena may appear. We distinguish two different
cases for the shape dependence of H, and the epitaxial

15 [ :

10 -

¢ (degrees)

0 ] ]
1.00 1.25 1.50 1.75
MISFIT (m)

FIG. 5. Epitaxial rotation angle determined by finite-size
effects for a circular region of size R =10a as a function of the
misfit m.
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rotation angle ¢: (i) The shape of the finite region is
defined by the shape of the substrate, i.e., when the adsor-
bate rotates the shape does not; (ii) the shape of the finite
region is determined only by the adsorbate, so it rotates
with ¢. We call R the rotation operator associated with
the epitaxial rotation angle. The two dependences (i) and
(ii) can be written as

(i) H;=6U,8,(R%q;;—Qyp) , (22)
(ii) H,=6U,S,[R "%(R?%q;,— Q)] . (23)

For irregular shapes it is difficult to proceed further,
but for hexagonal substrates on hexagonal adsorbates we
expect that the islands or grains will also exhibit hexago-
nal symmetry. (This is, in fact, the basis of the “symme-
try principle” of Bohr and Grey”) Assuming that the
function S f(Bq) has maximum values along high-
symmetry directions (0° or 30°), we can from Egs. (22)
and (23) easily derive the four conditions described in
Fig. 4 and Eq. (16). Thus we obtain the same relations
from two different physical mechanisms. This makes it
difficult to distinguish from experimental results which
mechanism is the most important. If the regions are
striped, the function S f(q) will be elongated in the direc-
tion perpendicular to the stripe. In this case we can justi-
fy the ‘“‘semicoincidence” lattice theory that has been
mentioned in the previous section. -

Most experimental data fall on lines (a) and (b) of Fig.
4. Cases (c) and (d) can only be justified when finite-size
effects are important or when the Qf, terms in the expan-
sion of Eq. (3) are the dominant ones.

We note that the present theory can be reformulated
for the case of a rigid adsorbate on a deformable sub-
strate, yielding the same relations for the epitaxial rota-
tion angle, but with the opposite physical explanations.
This last possibility is less frequently realized in experi-
ments. A recent calculation of the interfacial energy for
the case of fcc(111)/bec(110) epitaxy® leads to similar
conclusions with respect to the role played by the finite
size of the adsorbate. Further experiments and analysis
concerning correlation between the epitaxial rotation an-
gle, the facets of the adsorbate islands or grains, and the
existence of steps on the substrate are needed in order to
clarify the importance of finite-size effects in the deter-
mination of the epitaxial rotation angle. The presence of
steps and minute amounts of impurities may, in fact,
completely dominate the epitaxial rotation. This was
demonstrated experimentally for Kr/Pt(111).> A motiva-
tion for the present Monte Carlo simulation study is to be
able to study realistic size samples and yet to avoid the
influence of such effects.

III. MONTE CARLO SIMULATION

A. Details

We have used a conventional Metropolis algorithm to
simulate the model® for the case of D, and H, on graph-
ite. A number of particles N ranging between 1000 and
4000 have been placed on a substrate with 90X90=8100
cells and periodic boundary conditions. During each
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Monte Carlo step (MCS), N attempts are made to dis-
place a particle on the surface. Each proposed displace-
ment is a random 2D vector uniformly distributed in a
circle of radius R,,. For R, =0.2a, at least 10% of
the attempts are accepted for low temperatures and high
coverage. The large size of the system allows us to mea-
sure the structure factor S(q) with a resolution of 90 X 90
points in each reciprocal space lattice cell. Averages over
the six equivalent directions of the hexagonal lattice are
made to improve the statistics of our results. The initial
configuration for the simulations is a disordered state
equilibrated during 5X10* MCS at high temperature
(kgT /€=6.0). For the case N =2700(p=1) simulations
started from an ordered V'3XV'3 structure have also
been done. Averages of the interesting quantities have
typically been taken over 50—-100 configurations, separat-
ed by 10°-5X10°* MCS after an equilibration time of
2X10*-5X10* MCS. In addition, averaging over 3-5
independent runs have been made. Stabilization of the
low-temperature phases was achieved after three or four
successive stepwise quenches. These consisted of simulat-
ing over a long time ( ~ 10* MCS) at the desired final tem-
perature T, then reheating to higher temperature (~27),
and slowly cooling down to temperature T. The cycle
was then repeated with slower cooling rates. This
method helps enormously in the growth of the ordered
domains and in resolving the small satellites in S(q).
Equilibration problems are probably associated with the
existence of first-order phase transitions. We have ap-
plied the same treatment to all the independent runs for
different coverages, so that even in case that equilibrium
is not completely reached, we can still compare our re-
sults. The phase diagram discussed in Sec. IIIC was
determined using temperature scans starting from the
low-temperature, equilibrated phases, and heating by
steps of kzAT /e~0.02. Most of the simulations have
been carried out using an Apollo 10000 work station.
The duration of a typical run for a given temperature is
8-10 CPU hours, and the total amount of time expended
is about 2 X 10° CPU hours.

B. Parameters for D, and H,

The model [Eq. (2)] contains four parameters
(a,0,Ug,€). Defining € and a as units of energy and
length, respectively, we reduce the number of free param-
eters to two dimensionless parameters: o*=o0 /a and
Uu*=—-U 19/€. The lattice parameter for graphite is
a=2.456 A. We also similarly define a dimensionless
temperature T*=k;T /€. Estimates for the parameters
(0*,U*) can be obtained from the literature. Since first-
principles calculations are complicated for 2D quantum
systems, most of the existing data comes from the corre-
sponding 3D systems. The behavior of the 3D solid rare
gases is well described by an isotropic Lennard-Jones in-
teraction,3® and estimates of o and € are known in this
case. Although a Lennard-Jones potential does not fully
reproduce the interaction between D, and H, molecules,
a fit to the 3D gas-phase isotherms gives €/k; =36.2 K,
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0=2.95 A for D, and €/k =36.7 K, 0=2.96 A for H,.
A discussion of these two parameters is given by Sil-
vera.” At low T, we assume that the molecules are al-
ways in the J =0 rotational state. At higher T, contribu-
tions from the J =1 state will also yield anisotropic in-
teractions. The energy difference between these two
states is known to be 100 and 170 K for D, and H,, re-
spectively.?’ Thus for T <50 K, it is a good approxima-
tion to assume that all the molecules are in the spherical
(J =0) state. Estimation of U,; are more complicated.
A self-consistent phonon calculation for the commensu-
rate V'3X V'3 phase by Novaco®’ gives U, /kz=—7.7
and —8.1 K for H, and D,, respectively. The difference
is associated with the mass difference between the two
molecules which gives a higher zero-point motion for H,
than for D,.

Using the data quoted above, we find (o*,U*)
~(1.2,0.22) for D, and (1.2,0.20) for H,. However, for
adsorbates we must also consider the following renormal-
ization effects: (i) zero-point motion reduces the
particle-particle interactions. This is not taken into ac-
count in the above estimations of € and o, since they are
obtained from high-temperature data; (ii) the 2D
particle-particle interaction is smaller than that estimated
from the 3D system for the same reason as in (i). These
two effects reduce € and increase o leading to values of
U* and o* somewhat larger than estimates in the litera-
ture for 3D.

In our simulations we have used (1.3,0.333) and
(1.3,0.167) for D, and H,, respectively. Some simulations
with other values of U* have also been done. Figure 6
shows the studied points in the (o*, U*) parameter space,
together with the literature data for different systems.
Our selected values give good qualitative agreement with
the experimental phase diagrams of both systems. How-
ever, a quantitative comparison with experiments is
difficult for two reasons: (i) an accurate relation is un-
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FIG. 6. Parameter space of our model. X indicates MC
simulation points, and ® indicates the best fit with H, and D,.
Values for other systems are collected from the literature: data
for Ne, Ar, Kr, and Xe from Ref. 6, alternative values for Ne
from Refs. 6 and 36, “He from Refs. 36 and 40, H, and D, from
Refs. 29 and 37 and alternative values for H, from Refs. 29 and
41.
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known between the experimentally reported coverage and
that defined theoretically —substantial differences appear
if one compares different experimental measure-
ments;'>!718 (ii) the correct temperature scale depends
on an absolute estimation of €, which is not accurately
known. A comparison between the melting temperatures
at p=1 between the experiments'? and our MC simula-
tion gives €/kp =25 K. This value is in agreement with
the conclusion that the 2D value of € should be smaller
than the value estimated from the 3D system
[e/kp=36.2 (Ref. 29)], as discussed above. Experimen-
tally, the coverage p is determined by assuming that p=1
for the coverage with the highest melting temperature.'?
This might be different from our definition p=3N /N, if
the system exhibits nonhomogeneous density. In fact, in
our simulations for low values of U*, we have found a
tendency for the formation of holes (low-density regions),
even at p=1.

C. Results and discussion

Figure 7 compares experimental'? (bottom) and simu-
lated (top) phase diagrams for D, on graphite. The MC

1.8 T T T T T T T T
MC

1.2+

T*

1.0

0.8+ ]

0.4

30 —t

25
20 Te
15 |

10

TEMPERATURE (K)

1.8 1.4 1.0 0.8 0.4
COVERAGE »p

FIG. 7. Simulated (top panel) and experimental (Ref. 12)
(bottom panel) phase diagrams for D, on graphite. The simula-
tion data has been obtained from the E vs T scans for different
coverages (indicated by O and @) as well as from the analysis of
the intensities of the different peaks in the structure factor with
parameters U*=1/3 and o*=1.3 (indicated by 0).
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data have been obtained from the energy averages, as well
as from the detailed study of the structure factor intensi-
ty of the different phases. Qualitative agreement between
the different phase regions can be seen. However, the €
phase at the boundary between the ¥ and incommensu-
rate phases is not found in the simulations. The transi-
tion lines between the fluid and gas phases are difficult to
reproduce by the simulation (experimentally, they corre-
spond to very broad peaks in the specific heat!?). A de-
tailed description of the phase diagram has not been at-
tempted for H, on graphite. The same features appear
except that there is no intermediate ¥ phase between the
commensurate and incommensurate phases, in agreement
with the experimental results.!3 Below, we concentrate
on the case of D,.

The simulations allow a detailed study of several quan-
tities which are not observable, or only indirectly, in ex-
periments. Figure 8 shows the energies versus tempera-
ture for different coverages. We obtained these results by
increasing the temperature of our system from a long-
time equilibrated low-temperature phase. (The method
used to obtain good equilibrated phases is explained in
Sec. III A.) We observe small features, kinks, and
changes in slopes, at the transition points in the phase di-
agram of Fig. 7(a). We have not attempted to investigate
the nature of all the transitions in detail. The melting
transition for p=1.336 was investigated, however, and
does show signs of hysteresis, characteristic of a discon-
tinuous transition. The radially averaged structure factor
S(g) is a very good indicator of the various structural
phase transitions. It is shown in Fig. 9 for a number of
coverages. It is obvious that peaks at different values of ¢
grow and decay as a function of coverage. The intensity
variation of the characteristic peaks in the nonaveraged
S(q) will be analyzed in detail below, but S(q) already
shows the existence of several phases which we discuss
below. In our simulations we have been able to scan a

E*/N

__4 L L 1 1 | 1 L 1 1
0 1 2

FIG. 8. Examples of energy vs temperature scans for
different coverages obtained by MC simulations. Arrows indi-
cate the positions of the different phase transitions.
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much larger region in reciprocal space than is experimen-
tally feasible so far. We begin by describing regions of
the phase diagram with simple hexagonal phases.

1. Commensurate phase

At low coverages 0.8 <p< 1,1, we find a commensu-
rate, hexagonal phase. For smaller coverages this phase
is stable, such that holes are formed in order to preserve
the density of the V'3X V'3 structured domains of regis-
try A, B, and C. Domain walls with a local, relaxed
structure reminiscent of that of the higher-density ¥
phase separate these domains. If the atoms are only
marked in the A4, B, and C positions (we call this the cen-
tered representation), the walls can generally be charac-
terized as the conventional heavy and super-heavy walls.
The tendency to form holes is enhanced for lower values
of U*.

2. Fully incommensurate phase

For high coverages, 1.4 <p, a dense hexagonal phase is
stable. It is a twin structure, which is epitaxially rotated
by angles =¢. The twin or grain boundaries between the

phases are low-density regions which contain precipitated
defects—vacancies. This is illustrated in Fig. 10, which
shows a snapshot of the simulation for 3969 particles
(p=1.47) at T*=0.3. We clearly see that there are
predominantly two types of twin domains (+¢). Further-
more, a few embedded defects and dislocation lines de-
form the structures, leading to difficulties in defining the
epitaxial angles. In the relatively small grains it is
difficult to determine if the dislocations prefer to form
pairs (not destroying the long-range orientational order)
or if they are isolated. Experimentally, it is possible that
the grains might be larger due to the longer available
time for reaching the equilibrium state. However, the
simulated size corresponds closely to the single crystal-
lites of Papyex samples of graphite.!® On the XYZ graph-
ite, the crystallites may be up to ten times larger. The
simulations are, therefore, made on rather realistic size
samples. The problem of the metastable—or not fully re-
laxed states—may be a real experimental feature, albeit
exaggerated in the simulations. Their main effect is
enhanced regions of coexisting phases as a function of
coverage.
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FIG. 10. Real-space snapshot corresponding to the simulat-
ed incommensurate phase (T*=0.3,N =3969). Two coexisting
domains rotated by ¢ and separated by low-density domain
walls can be seen.

3. The y phase

For intermediate coverages, 1.1<p<1.4, several in-
teresting phases appear. We can understand these as
phases in which the defects (vacancies) play an active
role—namely, as elements of the structure. The vacan-
cies are dissolved in the adsorbate, and the phase transi-
tion between the high- and intermediate-coverage phases
can be thought of as a transition between a phase separat-
ed and a solvable state for the vacancies. The structures
are strongly relaxed around the vacancies. Figure 11(a)
shows the real-space snapshot of the y phase with large
relaxations screening the vacancies. On the right we
show the same structure with the particles registered at
the center of the cells (centered representation). This re-
veals the vacancies clearly, and demonstrates that dislo-
cations tend to form a dense set of dislocation pairs. It is
important to note that there is no perfect superlattice in
the predominant part of the y-phase region. The y phase
is stabilized by the diffuse scattering from the imperfect
structure. As explained in Sec. II C, this phase can be un-
derstood as a strongly 2g-modulated phase, or, in other
words, a hexatic phase with irregular pairs of disloca-

FIG. 11. Small sections of a real-space snapshot correspond-
ing to (a) the v phase and (b) the 4X4 superstructure. The pic-
tures on the right are the same but with the particles centered in
the nearest substrate wells (centered representation).
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tions. The weak melting transition to a structured liquid
corresponds to the loss of orientational order.

For a particular coverage vV p=1V'21/4, the vacancies
can be ordered in a perfect superlattice forming the 4X4
structure. This is shown in Fig. 11(b) (with the corre-
sponding centered representation on the right). When re-
laxed, this superlattice gives rise to superlattice peaks at
multiples of those of | of the substrate unit cell. Com-
parison with available experimental data!”!® gives good
agreement for the peak positions and the relative intensi-
ties of the peaks. This proves that the real space picture
of the 4X4 phase [Fig. 11(b)] obtained from our simula-
tions is similar to that found experimentally for D,. We
emphasize that the simulations of S(gq) for the large ac-
cessible region of the reciprocal space show characteristic
features of this phase which have not yet been found ex-
perimentally. It would be extremely interesting to see
this region investigated experimentally for D, (and other
systems).

4. The a phase

From the specific heat!'? and the LEED (Ref. 17) exper-
iments another phase at low coverages, 1.1 <p <1.2, has
been suggested. Figure 12(a) shows the real-space struc-
ture for p=1.104 and Fig. 12(b) the corresponding cen-
tered representation of the same region. It is not a

FIG. 12. (a) Real-space snapshot of the a phase for T*=0.3
and p=1.104. (b) The same, but with the particles centered on
the substrate wells (centered representation). A, B, and C regis-
tered domains can be seen, separated by meandering domain
walls.



7442

Qoo Q10

FIG. 13. Contour plot of S(q) in the a phase showing the
splitting of the q,o peak (7*=0.3 and p=1.104). The behavior
is similar to that found by LEED measurements in D, on graph-
ite.

striped phase, as suggested on the basis of observed asym-
metry in the LEED patterns. Rather, it is a meandering-
domain-wall phase, where the domain walls of the y
phase separate regions of A4-, B-, and C-registered
V'3X V'3 domains. It is possible that these domain walls
give rise to the stripelike features in the scattering pat-
terns. In order to test this idea, we have plotted in Fig.
13 an intensity contour plot of the scattering intensity
around the q,, position. We find a behavior similar to
that observed in the LEED experiments. We conclude
that in our pure system (free from substrate surface steps
and other imperfections) there is no evidence for a striped
phase. In fact, we raise the question of whether the
phase is a proper phase at all, or whether it is an inter-
mediate, meandering domain-wall “phase”. For a further
discussion of that phase we refer to Coppersmith et al.3®
and references in there.

5. Coverage dependence of S(q) and E

In our simulations, we have been able to determine the
structure factor over the first two substrate reciprocal-
lattice cells (i.e., up to Q,,;). Two-dimensional contour
plots of the intensity of S(q) have been published else-
where.?® Here, we shall discuss a number of quantitative
features by calculating the intensity of selected peaks,
which are characteristic for the various phases discussed
above.

The position of the dominant substrate peak qq is
shown in Fig. 14. It decreases linearly with V/p, showing
that the adsorbate lattice expands until hole formation
becomes more favorable. It is this monotonic variation
of |q;o! which makes possible the several phases observed
both experimentally and in the simulations for intermedi-
ate coverages. In the y-phase region, near the 4 X4 value
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FIG. 14. Position of the main peak of the adsorbate |qo| as a
function of V/p for T*=0.3. The positions of the satellites are
also shown.

for |qyol =Q10\/7/4, superlattice satellites occur. The
wave vectors for these satellites are also indicated in Fig.
14. Close agreement with experimental behavior'® is
found. We do not find evidence for even larger-unit-cell
structures, as might be expected on the basis of the coin-
cidence lattice models,?? in which a whole devil’s stair-
case of lock-in transitions should occur. The reason for
this is either that the simulations are made for systems
for which the size is too small and the equilibration time
too short in order to enable such large-unit-cell structures
to stabilize—or that it is a small-unit-cell imperfect
structure, a hexatic phase, which is stabilized by the dis-
order diffuse scattering, as discussed in Sec. IIC. Our
data and the experiments support the latter picture.

In Fig. 15 we show the epitaxial angle ¢ in the various
regions with variable coverage V'p. Perfect agreement is

12

10

[e0]

¢ (degrees)
D

FIG. 15. Epitaxial rotation angle vs \/7) for T*=0.3. Exper-
imental data corresponding to D, on graphite are also plotted.
Lines correspond to (a) the theoretical relation and (b) the
Novaco-McTague theory (Ref. 19) for =2. The dotted line
corresponds to the semicoincidence lattice model.
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obtained with experiments in region I (nonrotated
V3 X V73 structure) and region II (defect stabilized struc-
ture). The agreement is not as good in region III (elasti-
cally stabilized structure). Both experiments and simula-
tions show good agreement with theory in region I (non-
rotated) and II [relation (b) in Fig. 4], but again poorer
agreement in region III [relation (a) in Fig. 4]. We expect
that the difficulties in region III are due to the interplay
between several effects: elastic, vacancy defects, and
finite-size effects of the grains. This leads to poorly
defined angles ¢ and also, as we have observed, to coex-
istence of several imperfectly rotated grains (as discussed
in connection with Fig. 14). Nevertheless, a tendency for
the simulation results to follow the relation predicted
from the semicoincidence lattice theory (dotted line) is
seen.

In Fig. 16 we have plotted the intensity variation of
several of the characteristic peaks of S(q). We notice a
strong variation with coverage. The growth and decay of
the intensities indicate that the different phases are in
good agreement with the phase diagram (Fig. 7). We also
notice large coexistence regions, presumably due to non-
equilibrium features. We emphasize, however, each point
is obtained independently from quenches from the high-
temperature phases (as explained in Sec. IIT A).

The intensity of the Q,, peak in the structure factor is
the most interesting one, since that gives the largest con-
tribution to the energy integral in Eq. (5). It is the driv-
ing mechanism for gaining the energy from the corruga-
tion potential as shown in Sec. II A. In Fig. 17 we show
S(Q,p), together with S(Q;), as a function of coverage
and for T*=0.3. It is clear that the increasing disorder
at lower coverages allows the particles to occupy more
favorable positions (near the center of the cells) and thus
to gain energy until the corrugation potential locks the
particles into the V'3 X V3 structure at p~1. We notice
a small increase in S(Q,y) above the smooth, monotonic
increase, in the region where there is a lock-in to the 4 X4
structure. The extra increase is not observed in S(Q,).
This demonstrates that the structure-formation process is
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FIG. 16. Intensity of the most characteristic peaks of the
structure factor S(q) as a function of V/p for T*=0.3. The
identifications and relative positions of these peaks are shown
by the radial averages S(g) in Fig. 9.
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FIG. 17. Intensity of the S(Q,o) and S(Q,;) peraks as a func-
tion of V/p for T*=0.3.

strongly nonlinear (as discussed by Reiter and Moss®) and
that further relaxation and modulation of a rotated phase
may lead to further energy gain. This may be enough to
destroy the stability of nearby rotated phases, which are
optimal from a linear point of view, but for which qq
does not correspond to the correct 4 X4 structure. This
lock-in effect is clearly seen in Fig. 14.

Finally, a few remarks about the effect of the magni-
tude of the corrugation potential. In Fig. 18 we show the

ENERGY (e)

-3.6 | 1 1
1.0 1.1 1.2

Vp

FIG. 18. Energy vs Vp for T*=0.3 and different values of
U*.
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energy for T*=0.3 for different values of U*. The case
U*=1 discussed above has been most intensively stud-
ied. For decreasing U™* the lock-in phases for intermedi-
ate coverages disappear and the lattice expands at the ex-
pense of the energy —presumably in order to gain entro-
py. For small U* and at low coverages we notice the en-
ergy becomes independent of coverage. This is due to
hole formation, indicating that for 0 =1.3 the particles
prefer to form connected regions by forming holes to
preserve the optimum density. This suggests a new class
of transitions in which the formation of holes or islands is
an important element of the phase stabilization. The
holes and islands are of course easily seen in the real-
space pictures of the simulations. In S(g), the dominant
effect is the appearance of diffuse small-angle scattering
around g =0. This can be seen in Fig. 9 for the case
p—1.

IV. SUMMARY AND CONCLUSIONS

We have studied adsorbed particles on a corrugated
substrate, with special attention to the case of H,, D,,
and the rare gases on graphite. These are examples of 2D
systems that exhibit competition between the particle-
particle and particle-substrate interactions.

Firstly, we presented a general theoretical model (Sec.
II). For systems close to the V'3XV'3 structure, and
when the first term U, of the Fourier transformation of
the substrate potential is dominant, we have shown that
the particle-substrate energy is determined by the Fourier
transform of the density p(q) at q=Q;o. We have used
our theory to study the epitaxial rotation angles ¢ as a
function of the misfit m between the adsorbate and the
substrate structures. For perfect, infinite incommensu-
rate adsorbates no preferred value of ¢ is selected. Exist-
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ing theories!® consider only elastic deformations of the

adsorbate to determine the dependence of ¢(m) on the
misfit m. We further propose that deformations around
vacancies lead to another relation which explains a large
number of available experimental data. We have also an-
alyzed the role played by the finite size of the adsorbed is-
lands or grains, and we have shown that this can give
other ¢(m) relations.

Secondly (Sec. III), we have performed MC simulations
for the case of D, on graphite. The obtained phase dia-
gram (as a function of T and p) is in good agreement with
that measured by calorimetry.!? The structure factors
obtained from our MC data is also in agreement with
LEED (Ref. 17) and neutron-scattering data.'® In con-
trast to experiments, the possibility of calculating S(q)
for large values of g gives new information about the
structure of the intermediate phases appearing between
the commensurate and the incommensurate regions. In
particular, from our simulations, we have determined the
structures of the y phase to be hexatic and found the
real-space structure of the further modulated 4 X4 phase.
No evidence for stripes in the a phase was found. The
epitaxial rotation angle exhibited by the different phases
in our simulations is in agreement with experiments!” and
with the developed theory.
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