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1 Introduction

Ever since the seminal paper of Shapley and Shubik (1954), the a priori assessment of the power

possessed by each agent participating in a decision making body has been an important topic in

game theory. Simple coalitional games can be used to describe these situations by attaching 1 to

any coalition that is strong enough to pass a proposal and 0 to the rest. If power is understood

as the ability of an agent to change the outcome of a ballot, it is sensible to use the marginal

contributions to develop power indices. Thus, the value proposed by Shapley (1953) to distribute

the surplus generated from the cooperation of the agents in economic environments has been

shown to be valuable also for evaluating the power in a legislature or committee.

In this paper, we aim at studying the distribution of power in the presence of coalitional

externalities. Consider, for instance, a legislature that uses the plurality rule to elect the prime

minister. There are cases where minority governments emerge just because the remaining parties

do not agree on an alternative candidate. In such a situation, whether a coalition is winning

or not may depend on the behavior of the rest of the parties. This shows that games in

partition function form (Thrall and Lucas, 1963) are the appropiate framework in which to

study situations like these. Some years ago, Bolger (1986) employed games in partition function

form to study multi-candidate elections and proposed several power indices. One of the main

novelties of our approach is to consider a subclass of games in partition function form that are

monotonic. This class of games generalizes the simple games in characteristic function form

as introduced by von Neumann and Morgenstern (1944). The aforementioned monotonicity

property has been recently proposed in Alonso-Meijide et al. (2015) and makes special sense in

situations with negative externalities, such as the ones outlined above.

The problem of extending the Shapley value to games in partition function form was first

tackled by Myerson (1977). More recently, the topic has attracted some attention and alternative

generalizations of the Shapley value have been proposed (Albizuri et al., 2005; Macho-Stadler

et al., 2007; de Clippel and Serrano, 2008; Dutta et al., 2010). The existence of so many different

proposals can be explained by the difficult task of generalizing marginal contributions to games

in partition function form. Indeed, if we want to measure the change in the utility of a coalition

when one of its members leaves it, then we should know which coalition will the defecting agent

join, if any. Albizuri et al. (2005) assume that the agent can join any coalition and that any

such coalition configuration is equally likely. Macho-Stadler et al. (2007) generalize the previous

approach by considering a probability distribution over the different events that could take
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place. However, de Clippel and Serrano (2008) argue that the intrinsic marginal contribution is

originated by an agent that leaves a coalition to become a singleton. In a subsequent step, the

agent could join any coalition, but the effect of this move should not be considered a marginal

contribution. Finally, Dutta et al. (2010) follow the potential approach and study a family of

values that contains the previous proposals.

In this paper, we study the restriction of the value introduced by de Clippel and Serrano

(2008) to simple games in partition function form as devised by Alonso-Meijide et al. (2015). The

monotonicity property of the class of simple games considered allows us to speak about minimal

winning embedded coalitions. This kind of coalition enables us to define null and symmetric

players while avoiding the concept of marginal contribution. We show that this power index

is the only one which is efficient, symmetric, and has both the null player property and the

transfer property. These four properties are natural adaptations of the homonymous properties

in frameworks without externalities. The first three are properties that any sensible power index

should have (Felsenthal and Machover, 1998) and the last is the transfer property proposed by

Dubey (1975). The rest of this note is organized into two sections. The preliminaries state some

previous results and Section 3 presents our characterization result.

2 Preliminaries

Let N be a finite set (|N | > 1) of players that we keep fixed henceforth. A characteristic

function is a mapping v : 2N = {S : S ⊆ N} → R, satisfying v(∅) = 0. The set of characteristic

functions is denoted by CG. A value is a mapping f that assigns a unique vector f(v) ∈ RN to

every v ∈ CG. The Shapley value (Shapley, 1953), Sh, defined for every v ∈ CG and i ∈ N by1

Shi(v) =
∑

S⊆N\i

(n− s− 1)!s!

n!
[v (S ∪ i)− v (S)] .

The set of partitions of N is denoted by P(N).2 An embedded coalition is a pair (S, P ) where

P ∈ P(N) and S ∈ P . We will sometimes refer to S as the active coalition in P and we will say

that a player i ∈ N belongs to an embedded coalition (S, P ) when i ∈ S. The set of embedded

coalitions is denoted by EC, i.e., EC = {(S, P ) : P ∈ P(N) and S ∈ P}. Given P ∈ P(N) and a

nonempty coalition S ⊆ N , we let P−S ∈ P(N \ S) denote the partition P = {T \ S : T ∈ P}.
1We abuse notation slightly and write T ∪ i and T \ i instead of T ∪ {i} and T \ {i}, respectively, for T ⊆ N

and i ∈ N . We use lowercase letters to denote the cardinality of a finite set.
2For convenience, we assume that the empty set is an element of every partition even though we may omit

writing it, i.e., for every P ∈ P(N), ∅ ∈ P .
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A partition function is a mapping v : EC → R such that v(∅, P ) = 0 for every P ∈ P(N).

The set of partition functions is denoted by G. Is is easy to see that G is a vector space over

R. Indeed, de Clippel and Serrano (2008) develop a basis of the vector space that we present

below. Given (S, P ) ∈ EC, with S 6= ∅, let e(S,P ) ∈ G be defined for every (T,Q) ∈ EC by

e(S,P )(T,Q) =

1 if S ⊆ T and ∀T ′ ∈ Q \ T, ∃S′ ∈ P such that T ′ ⊆ S′, 3

0 otherwise.

Then, de Clippel and Serrano (2008) show that
{
e(S,P ) : (S, P ) ∈ EC and S 6= ∅

}
constitutes a

basis of G.

In this paper, we focus on the so-called simple games in partition function form as introduced

in Alonso-Meijide et al. (2015). This subclass of partition functions is a natural generalization

of the class of simple games in characteristic function form. In order to define monotonicity in

the class G, we consider the following notion of inclusion between embedded coalitions.

Definition 2.1. Let (S, P ), (T,Q) ∈ EC. We say that (S, P ) is contained in (T,Q) and write

(S, P ) v (T,Q) when S ⊆ T and ∀T ′ ∈ Q \ T , ∃S′ ∈ P such that T ′ ⊆ S′.

Note that whenever S 6= ∅, (S, P ) v (T,Q) if and only if e(S,P )(T,Q) = 1. According to the

above definition, an embedded coalition (S, P ) is a subset of another embedded coalition (T,Q)

if the active coalition in P is contained in the active coalitions in Q (i.e., S ⊆ T ) and moreover,

the partition P−T is coarser than Q\T . Notice that both P−T and Q\T are partitions of N \T .

We are now in the position to introduce the class of games under study.

Definition 2.2. A partition function v ∈ G is said to be a simple game (with externalities) if

it satisfies the three conditions below:

i) For every (S, P ) ∈ EC, v(S, P ) ∈ {0, 1}.

ii) v(N, {∅, N}) = 1.

iii) If (S, P ), (T,Q) ∈ EC is such that (S, P ) v (T,Q), then v(S, P ) ≤ v(T,Q).

An embedded coalition, (S, P ) ∈ EC, is said to be winning if v(S, P ) = 1 and losing otherwise.

The set of simple games is denoted by SG.

The monotonicity property defined in point iii) above allows us to properly speak about

minimal winning embedded coalitions. Let v ∈ SG. A winning embedded coalition, (S, P ) ∈
3As before, we may omit the braces and write Q \ T instead of Q \ {T} for every T ∈ Q ∈ P(N).
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EC, is said to be minimal if every proper subset of it is a losing embedded coalition, i.e., if

(T,Q) @ (S, P ) implies that v(T,Q) = 0.4 The set of all minimal winning embedded coalitions

of a simple game is denoted by M(v) and the subset of minimal winning embedded coalitions

that contain a given player i ∈ N is denoted by Mi(v), i.e., Mi(v) = {(S, P ) ∈M(v) : i ∈ S}.

A player i ∈ N is said to be a null player in v ∈ SG if i does not belong to any minimal

winning embedded coalition, i.e., Mi(v) = ∅.

Two players i and j are said to be symmetric in v if exchanging the two players in an

embedded coalition in which either player participates does not change its worth. Formally, let

π : N → N be defined by π(i) = j, π(j) = i, and for every l ∈ N \ {i, j}, π(l) = l. Then, i and j

are symmetric in v if for every (S, P ) ∈M(v) such that i ∈ S and j /∈ S, (π(S), π(P )) ∈M(v),

where π(S) = {π(i) : i ∈ S} and π(P ) = {π(S) : S ∈ P}.

3 The Shapley–Shubik index in the presence of external-

ities

A power index is a mapping, f, that assigns a vector f(v) ∈ RN to every simple game v ∈ SG,

where each coordinate fi(v) describes the power of player i ∈ N . Next, we present four properties

that a power index may satisfy. All of them are based on well known properties in the framework

of games in characteristic function form, adapted to our setting.

eff A power index f is efficient if
∑

i∈N fi(v) = 1 for every v ∈ SG.

npp A power index f has the null player property if fi(v) = 0 for every v ∈ SG and every null

player i ∈ N in v.

sym A power index f is symmetric property if fi(v) = fj(v) for every (N, v) ∈ SG and every

pair i, j ∈ N of symmetric players in v.

tra A power index f has the transfer property if f(v) + f(w) = f(v ∨ w) + f(v ∧ w) for every

pair of simple games v, w ∈ SG.

First of all, we show that these four properties single out a unique power index.

Theorem 3.1. There is at most one power index satisfying eff, npp, sym, and tra.

4A proper subset, (T,Q) @ (S, P ), is a subset (T,Q) v (S, P ) satisfying (T,Q) 6= (S, P ).
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Proof. Let f be a power index satisfying the four properties. We show, by induction on the

number of minimal winning coalitions, that f is unique.

First, let v ∈ SG be such that |M(v)| = 1. ThenM(v) = {(S, P )} for some (S, P ) ∈ EC and

v = e(S,P ). It is immediate to check that every i /∈ S is a null player in e(S,P ). Then, by npp,

fi
(
e(S,P )

)
= 0. Similarly, every two players in S are symmetric in e(S,P ). Then, by sym, they

get the same payoff and by eff we conclude that fi
(
e(S,P )

)
= 1
|S| for every i ∈ S.

Second, suppose that f is uniquely determined for every v ∈ SG with |M(v)| < r. Let v ∈ SG

with M(v) =
{(
S1, P

1
)
, . . . , (Sr, P

r)
}

. Next, since v is monotonic, for every (T,Q) ∈ EC,

v(T,Q) = max
(S,P )∈M(v)

e(S,P )(T,Q) = max
{
w(T,Q), e(Sr,P r)(T,Q)

}
,

where w(T,Q) = max
k∈{1,...,r−1}

e(Sk,Pk)(T,Q). Since v = w ∨ e(Sr,P r), by tra,

f(w) + f
(
e(Sr,P r)

)
= f(v) + f

(
w ∧ e(Sr,P r)

)
.

Note that the two payoffs on the left-hand side of the equation above are uniquely determined

by the induction hypothesis. Then it only remains to prove that the vector f
(
w ∧ e(Sr,P r)

)
is

uniquely determined.

Third, for every k ∈ {1, . . . , r − 1}, we define the coalition Tk = Sk ∩ Sr and the par-

tition Qk =
{
U ∩ V : U ∈ P k and V ∈ P r

}
. Observe that

(
Tk, Q

k
)
∈ EC. We claim that

M
(
w ∧ e(Sr,P r)

)
=
{(
Tk, Q

k
)

: k ∈ {1, . . . , r − 1}
}

. Indeed, let (T,Q) ∈ EC. Then

w ∧ e(Sr,P r)(T,Q) = 1⇔

w(T,Q) = 1 and

e(Sr,Pr)(T,Q) = 1

⇔

∃k ∈ {1, . . . , r − 1} : (Sk, Pk) v (T,Q) and

(Sr, Pr) v (T,Q)

⇔ ∃k ∈ {1, . . . , r − 1} :

Sk ∩ Sr ⊆ T and

Q \ T is finer than P k \ Sk and P r \ Sr

Notice that, by definition of Qk, any partition which is finer than both P k \ Sk and P r \ Sr is

necessarily finer than Qk \ Tk. Thus, the above statement is equivalent to

∃k ∈ {1, . . . , r − 1} :

Tk ⊆ T and

Q \ T is finer than Qk \ Tk
⇔ ∃k ∈ {1, . . . , r − 1} : (Tk, Qk) v (T,Q).

Since all the above statements are if and only if implications, we have shown the claim.

Fourth, and last, since
∣∣M (

w ∧ e(Sr,P r)

)∣∣ < r, by the induction hypothesis f
(
w ∧ e(Sr,P r)

)
is unique and the proof is concluded. �
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Finally, we show that there is indeed one power index with the four properties. As did Shapley

and Shubik (1954), we consider the restriction of the externality-free value of (de Clippel and

Serrano, 2008) to our class of simple games.

Definition 3.1. The externality-free Shapley–Shubik index, SS, is the power index defined by

SS(v) = Sh(v∗), where v ∈ SG and v∗ ∈ CG is then defined by putting v∗(S) = v
(
S,
{
S, {j}j∈N\S

})
for each S ⊆ N . 5

Theorem 3.2. SS satisfies eff, npp, sym, and tra.

Proof. eff follows from the fact that Sh is efficient.

To show npp, let i ∈ N be a null player in v ∈ SG. We will see that v∗(S∪i) = v∗(S) for every

S ⊆ N\i. Suppose, on the contrary, that there is a coalition S ⊆ N\i such that v∗(S∪i) 6= v∗(S).

Then, by definition of v∗, v
(
S ∪ i,

{
S ∪ i, {j}j∈N\(S∪i)

})
6= v

(
S,
{
S, {j}j∈N\S

})
. Taking into

account that
(
S,
{
S, {j}j∈N\S

})
v
(
S ∪ i,

{
S ∪ i, {j}j∈N\(S∪i)

})
and the definition of SG, we

necessarily have that v
(
S ∪ i,

{
S ∪ i, {j}j∈N\(S∪i)

})
= 1 and v

(
S,
{
S, {j}j∈N\S

})
= 0. Since

i is a null player in v,
(
S ∪ i,

{
S ∪ i, {j}j∈N\(S∪i)

})
cannot be a minimal winning embedded

coalition in (N, v). Let (T,Q) ∈ M(v) be such that (T,Q) v
(
S ∪ i,

{
S ∪ i, {j}j∈N\(S∪i)

})
.

Again, since i is a null player in v, i /∈ T or, equivalently, T ⊆ S. Then

(T,Q) v
(
S,
{
S, {j}j∈N\S

})
,

which contradicts the assumption that v
(
S,
{
S, {j}j∈N\S

})
= 0. That is, we have shown that i

is a null player in the classical sense in the characteristic function v∗. Finally, since Sh satisfies

the null player property (Shapley, 1953), SSi(N, v) = 0.

To show sym, let i, j ∈ N be two symmetric players in v ∈ SG and let S ⊆ N \ {i, j}.

Suppose that
(
S ∪ i,

{
S ∪ i, {l}l∈N\(S∪i)

})
is a winning embedded coalition. We show that(

S ∪ j,
{
S ∪ j, {l}l∈N\(S∪j)

})
is also winning embedded coalition. Indeed, suppose that there is

a (T,Q) ∈ M(v) such that (T,Q) v
(
S ∪ i,

{
S ∪ i, {l}l∈N\(S∪i)

})
. On the one hand, if i /∈ T ,

then (T,Q) ⊆
(
S ∪ j,

{
S ∪ j, {l}l∈N\(S∪j)

})
and we are done. On the other hand, suppose

that i ∈ T . Let π : N → N be defined by π(i) = j, π(j) = i, and for every l ∈ N \ {i, j},

π(l) = l. Note that since i and j are symmetric players, (π(T ), π(Q)) ∈ M(v). Moreover,

(π(T ), π(Q)) v
(
S ∪ j,

{
S ∪ j, {l}l∈N\(S∪j)

})
because π(T ) = (T \ i) ∪ j ⊆ S ∪ j. All in all,

we have shown that i and j are symmetric players (in the classical sense) in the characteristic

5Observe that for our class of simple games, v∗ associates to every coalition its optimistic expected worth.

I.e., if v ∈ SG, then for every S ⊆ N , v∗(S) = max
(S,P )∈EC

{v(S, P )}.
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function v∗. Finally, since Sh is symmetric (Shapley, 1953), the payoffs of i and j in v according

to SS coincide.

To show tra, let v, w ∈ SG. Then

SS(v) + SS(w) = Sh(v∗) + Sh(w∗) = Sh(v∗ ∨ w∗) + Sh(v∗ ∧ w∗) = Sh((v ∨ w)∗) + Sh((v ∧ w)∗)

= SS(v ∨ w) + SS(v ∧ w),

where the first and last equalities hold by definition of SS, the second is due to the fact that Sh

satisfies the classic transfer property (Dubey, 1975), and the third follows from v∗∨w∗ = (v∨w)∗

and v∗ ∧ w∗ = (v ∧ w)∗. Indeed, if S ⊆ N , then

(v∗ ∨ w∗)(S) = max{v∗(S), w∗(S)} = max
{
v
(
S, {S, {j}j∈N\S}

)
, w
(
S, {S, {j}j∈N\S}

)}
= (v ∨ w)

(
S, {S, {j}j∈N\S}

)
= (v ∨ w)∗(S).

Exchanging the maximum with the minimum in the equation above shows that v∗∧w∗ = (v∧w)∗,

which concludes the proof. �

To conclude, we present the characterization result and show the logical independence of the

four properties.

Theorem 3.3. The externality-free Shapley–Shubik index is the only power index satisfying

eff, npp, sym, and tra. Moreover, the four properties are independent.

Proof. The characterization is a direct consequence of Theorems 3.1 and 3.2. To show the

independence, consider the following power indices.

Let f1 be the power index defined by f1i (v) = 0 for v ∈ SG and i ∈ N . Then f1 satisfies npp,

sym, and tra, but not eff.

Let f2 be the power index defined by f2i (v) = 1
n for v ∈ SG and i ∈ N . Then f2 satisfies eff,

sym, and tra, but not npp.

Let f3 be the power index defined as follows: if v ∈ SG is such that v(S, P ) = 0 for every

(S, P ) ∈ EC with S 6= N , then f3(v) = (1, 0 . . . , 0). For any other v ∈ SG, put f3(v) = SS(v).

Then f3 satisfies eff, npp, and tra, but not sym.

The DP-externality power index defined in Alonso-Meijide et al. (2015) satisfies eff, npp,

and sym, but not tra. �
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