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Abstract

Background

Elimination of Plasmodium vivaxmalaria would be greatly facilitated by the development

of an effective vaccine. A comprehensive and systematic characterization of antibodies to

P. vivax antigens in exposed populations is useful in guiding rational vaccine design.

Methodology/Principal Findings

In this study, we investigated antibodies to a large library of P. vivax entire ectodomain

merozoite proteins in 2 Asia-Pacific populations, analysing the relationship of antibody

levels with markers of current and cumulative malaria exposure, and socioeconomic and

clinical indicators. 29 antigenic targets of natural immunity were identified. Of these, 12

highly-immunogenic proteins were strongly associated with age and thus cumulative life-

time exposure in Solomon Islanders (P<0.001–0.027). A subset of 6 proteins, selected on

the basis of immunogenicity and expression levels, were used to examine antibody levels

in plasma samples from a population of young Papua New Guinean children with well-

characterized individual differences in exposure. This analysis identified a strong associa-

tion between reduced risk of clinical disease and antibody levels to P12, P41, and a novel

hypothetical protein that has not previously been studied, PVX_081550 (IRR 0.46–0.74;

P<0.001–0.041).
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Conclusion/Significance

These data emphasize the benefits of an unbiased screening approach in identifying novel

vaccine candidate antigens. Functional studies are now required to establish whether

PVX_081550 is a key component of the naturally-acquired protective immune response, a

biomarker of immune status, or both.

Author Summary

Plasmodium vivax is now the predominant malaria parasite outside Africa. Because P.
vivax can remain dormant in the liver for months, identifying and treating P. vivax in
asymptomatic individuals is difficult. Additionally, current widely-used vector control
measures are less efficient against mosquitoes that transmit P. vivax. An effective vaccine
would therefore immensely facilitate P. vivax elimination. Unfortunately, little is known
about P. vivax biology and only a few proteins have been investigated as targets for vaccine
development. To address these knowledge gaps, we measured antibody levels to 34 entire
ectodomain proteins predicted to be involved in P. vivax invasion of erythrocytes, in sam-
ples from individuals living in 2 malaria-endemic Asia-Pacific countries. We found that
antibodies in malaria-exposed Solomon Islanders were reactive to the majority of proteins
in our panel, and that antibodies to 12 of these proteins strongly reflected cumulative life-
time exposure to P. vivax. In samples from Papua New Guinea children, we identified an
association between antibodies to 3 proteins and protection against clinical malaria. Our
results demonstrate that screening antibodies to a large number of P. vivax proteins is a
useful approach in identifying novel targets of immunity. Functional studies are now
required to establish whether these proteins are biomarkers of an individual’s immune sta-
tus, potential vaccine candidates that warrant further development, or both.

Introduction
Intensified research and funding have helped to significantly reduce the morbidity and mortal-
ity of malaria, and an increasing number of countries are now aiming to eliminate this disease
[1–3]. In Asia-Pacific and the Americas, however, interrupting local Plasmodium vivax trans-
mission will be particularly challenging. The ability of P. vivax to form dormant liver hypno-
zoites, which are responsible for ~80% of all blood-stage infections [4, 5], provides a source of
new blood-stage infections in the absence of transmission. P. vivax commonly causes low-den-
sity asymptomatic infections that often go undetected and thus untreated. Moreover, the early
maturation and peripheral circulation of P. vivax gametocytes, coupled with high infectivity
and rapid development in mosquitoes, make P. vivaxmore refractory to control measures [6].
As a consequence, P. vivax is now the predominant Plasmodium species outside Africa [1].

New tools are needed to control and eliminate vivaxmalaria. Vector control strategies that
are broadly effective in reducing P. falciparum transmission, such as insecticide-treated nets
(ITNs) and indoor residual spraying, seem to be less effective against P. vivax vectors [7, 8],
which are more likely to bite and rest outdoors, and less likely to bite humans than African P.
falciparum vectors [9]. Furthermore, primaquine, the only drug effective against P. vivax hyp-
nozoites, is associated with hemolysis in glucose-6-phosphate dehydrogenase-deficient individ-
uals [10]. Similar effects have been seen for tafenoquine, the only other liver-stage drug in
clinical development [11]. Given these challenges, the development of a highly effective vaccine
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would immensely facilitate P. vivax elimination, perhaps even more so than P. falciparum elim-
ination [12].

Merozoites represent the only extracellular phase of the Plasmodium blood-stage life cycle,
and merozoite antigens are therefore appropriate vaccine targets. Several studies have investi-
gated merozoite antigens as targets of natural protective immunity to P. falciparummalaria
[13], and their potential as vaccine candidates [14]. For P. vivax, the availability of the genome
sequence [15] and transcriptome [16] have enhanced our understanding of this parasite’s biol-
ogy, facilitating the identification of many proteins that are homologous to P. falciparum anti-
gens [17–19]. However, the targets of natural immunity to P. vivaxmalaria remain poorly
understood, and systematic screens of multiple antigens are lacking [20]. As a consequence,
there are currently only a handful of P. vivax vaccine candidate antigens in pre-clinical devel-
opment, with only a single blood-stage antigen (PvDBP) nearing clinical development [21].

In this study, we investigated 34 recombinant P. vivax protein ectodomains [22], known or
predicted to localize to the merozoite cell surface, micronemes, or rhoptries, as targets of natu-
ral immunity. For 12 highly-immunogenic proteins, we investigated associations between lev-
els of antibodies and indicators of current and cumulative malaria exposure in a moderately-
endemic area of the Solomon Islands (SI). Using a cohort of young Papua New Guinean
(PNG) children with well-characterized individual differences in exposure, we identified an
association between reduced incidence of clinical disease and antibody levels to 3 proteins,
including a novel hypothetical protein that has not been previously studied. These data empha-
size the benefits of an unbiased screening approach in identifying vaccine candidates and indi-
cate that these 3 antigens are high-priority targets for further functional studies, and
potentially vaccine development.

Methods

Protein library
Proteins were designed, constructed, and expressed as described previously for P. falciparum
merozoite proteins [23, 24]; the P. vivax ectodomain library has been described in detail by
Hostetler et al. (S1 Table) [22]. Briefly, sequences derived from the P. vivax Salvador-1 strain
encoding merozoite ectodomains, excluding their signal peptide, transmembrane domain, and
glycosylphosphatidylinositol (GPI) anchor sequences (if present), were codon-optimized for
expression in human cells and chemically synthesized (GeneArt AG). Soluble recombinant
proteins (S1 Table) containing a ~25-kDa C-terminal rat Cd4d3+d4 (Cd4) tag were expressed
in human embryonic kidney (HEK) 293E cells as either biotinylated or 6-His-tagged forms,
culture supernatants were collected 6 days after transfection, and biotinylated proteins were
dialysed in HEPES-buffered saline. All expression plasmids are openly available at Addgene
(http://www.addgene.org/express/vivax/).

Protein purification
6-His-tagged proteins were purified by immobilized metal-ion affinity chromatography using
HisTrap-HP columns on an AKTA Xpress (GE Healthcare) following the manufacturer’s
instructions. Proteins were then conjugated to Luminex Microplex microspheres (Luminex
Corporation) as described [25], using the following concentrations per 2.5x106 beads: P41,
0.5 μg/mL; PVX_081550, 1.2 μg/mL; P12, 0.2 μg/mL; GAMA, 0.015 μg/mL; ARP, 0.09 μg/mL;
CyRPA, 1.5 μg/mL; and Cd4, 2 μg/mL. Coupling efficiency was determined by using an
immune plasma pool known to be highly reactive with the antigens, with the appropriate anti-
gen concentration resulting in high fluorescence intensity by the reporter fluorochrome.
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Study populations
Immunoreactivity and comprehensive screens. Samples collected in a cross-sectional

survey (3501 individuals aged�6 months) in May 2012 in Ngella, Central Island Province, SI
were used [26]. A random subset of 22 adolescents (10–19 years) and 24 adults (20–50 years)
were selected for the immunoreactivity screen, because they had a higher cumulative exposure
and were thus more likely to have acquired substantial levels of natural immunity. In all 46
samples, total IgG to 34 biotinylated proteins and Cd4-tag alone bound to streptavidin-coated
plates was measured using ELISA, as described [22].

12 highly-immunoreactive proteins identified in the immunoreactivity screen were subse-
quently screened using ELISA [22] in 144 individual samples from the same survey to investi-
gate relationships with infection status, clinical symptoms, and socioeconomic indicators.
Samples were randomly selected based on age and infection status in a 3x3 factorial design that
included 48 children (5–9 years), 48 adolescents (10–19 years), and 48 adults (20–80 years)
either without any Plasmodium infections, with a current P. vivaxmonoinfection detected by
PCR, or with a current P. vivaxmonoinfection detected by both PCR and light microscopy
(LM). A detailed description can be found in S2 Table. Plasma pools from malaria-naïve Aus-
tralian and highly-immune PNG adult donors were included on each plate as negative and pos-
itive controls, respectively. Samples were tested in duplicate on separate plates.

Cohort study. Of the 12 highly-immunoreactive proteins, 6 were selected based on their
reactivity in Solomon Islanders and previously reported reactivity in Cambodians [22], as well
as their expression levels. These 6 proteins were expressed and purified as described above,
along with a Cd4-tag control, and used to measure total IgG in samples from a longitudinal
cohort of PNG children described in detail in [27]. Briefly, 264 children aged 1–3 years from a
rural area near Maprik, East Sepik Province were enrolled in March-September 2006 and fol-
lowed for up to 16 months. Children were actively checked for morbidity every 2 weeks, and
passive case detection was performed over the entire study period. All PCR+ P. vivax infections
were genotyped to determine the incidence of genetically distinct blood-stage infections
acquired during follow-up (i.e., the molecular force of blood-stage infections, molFOB) [28,
29]. Only samples from 230 children who completed follow-up were included in the present
study. Luminex bead array assays to measure total IgG were performed as described [30] using
plasma and secondary antibody donkey F(ab’)2 anti-human IgG Fc R-PE (Jackson ImmunoRe-
search) diluted 1:100 in PBS. Bead array assays included the same set of controls used for ELI-
SAs and a dilution series of the highly-immune PNG positive control pool to standardize plate-
to-plate variations. Samples were tested in singlicate.

Statistical analysis
Immunoreactivity screen. For all ELISA data, an OD cut-off of 0.1 was set as a conserva-

tive lower limit based on the plate reader’s limit of accurate detection, and samples with OD
values<0.1 were set to 0.1. Differences in population mean antibody levels to proteins and
Cd4 alone, and by age groups were assessed using Mann-Whitney U test.

Comprehensive screen. Duplicate wells were averaged and OD values for Cd4 subtracted to
correct for background. OD values were log10-transformed and differences in mean antibody
levels by exposure variables assessed using 2-tailed unpaired t-test or ANOVA. Multivariate
ANOVA models were fitted including all variables that were univariately associated with IgG
levels, with the best model determined by backward elimination using Wald’s Chi-square tests
for individual variables.

Cut-offs for positivity were set at 2 standard deviations above the mean antibody levels to
the negative controls. Differences in the breadth of antibody levels by age and infection status
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were assessed using negative binomial regression. To estimate seroconversion and serorever-
sion rates, seroprevalence data were stratified in 5- or 10-year age bins and analysed using
reverse catalytic modelling as described elsewhere [31, 32], with the model fitted in a Bayesian
framework.

Cohort study. To correct plate-to-plate variations, the dilutions of the highly-immune
PNG positive control pool were fitted as plate-specific standard curves using a 5-parameter
logistic regression model [33]. For each plate, Luminex median fluorescence intensity
(MFI) values were interpolated into relative antibody units based on the parameters esti-
mated from the plate’s standard curve. Antibody units ranged from 1.95x10-5 (i.e., equiva-
lent to 1:51200 dilution of the immune pool) to 0.02 (1:50). To account for the background
reactivity to the Cd4-tag, antibody levels were re-scaled by using linear regression to esti-
mate the antibody levels that would be detected if reactivity to the Cd4-tag was zero, as fol-
lows:

logðAB measÞ ¼ logðAB trueÞ þ b�logðCd4Þ
where AB_meas = measured antibody level, AB_true = true antibody level to a given anti-
gen, and Cd4 = measured antibody level to the Cd4-tag.

Associations between antibodies and age and exposure were assessed using Spearman rank
correlation, and differences with infection using 2-tailed unpaired t-test on log10-transformed
values. Negative binomial GEE models with exchangeable correlation structure and semi-
robust variance estimator [34] were used to analyse the relationship between IgG levels and
prospective risk of P. vivax episodes (defined as axillary temperature�37.5°C or history of
fever in the preceding 48 hours with a current P. vivax parasitemia>500 parasites/μL). For
this, IgG levels were classified into terciles and analyses done by comparing children with low
versus medium and high antibody levels. Children were considered at risk from the first day
after the initial blood sample was taken. The molFOB, representing individual differences in
exposure, was calculated as the number of new P. vivax clones acquired per year at risk, and
square-root transformed for better fit [29]. All GEE models were adjusted for seasonal trends,
village of residency, age, and molFOB. In multivariate models that included all antigens that
were univariately associated with protection, the best model was determined by backward elim-
ination using Wald’s Chi-square tests for individual variables. To investigate the effect of
increasing cumulative IgG levels to the combination of antigens on the risk of P. vivax episodes,
we assigned a score of 0, 1, and 2 to low, medium, and high antibody levels, respectively, and
then added up the scores to the 6 antigens to generate a breadth score per child. The breadth
score was then fitted as a continuous covariate in the GEE model described above. All analyses
were performed using STATA version 12 (StataCorp) or R version 3.2.1 (htpp://cran.r-project.
org).

Ethical statement
Ethical clearance was obtained from the PNGMedical Research and Advisory Committee of
the Ministry of Health, Solomon Islands National Health Research Ethics Committee, and the
Walter and Eliza Hall Institute. Informed consent was obtained from all participants and in
cases of children from their parents or guardians. As approved by the Australian and Solomon
Islands’ ethics committees, only verbal consent, documented on each participant’s case report
form, was obtained from participants in the cross-sectional survey in Ngella, Solomon Islands.
Written informed consent was obtained from the parents or guardians of all children partici-
pating in the PNG cohort study.
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Results

P. vivaxmerozoite proteins are targets of natural humoral immunity
We first investigated whether IgG from 46 P. vivax-exposed SI individuals recognized antigens
from our library. There was a high degree of variability in IgG levels to the different proteins.
The population mean antibody level to 85.3% (29/34) of proteins was significantly higher than
to Cd4 alone (P<0.001–0.018) and these were therefore considered immunogenic (Fig 1). IgG
levels were similar between adolescents and adults, except for 7/34 proteins (P<0.001–0.032)
(Fig 1). We then selected 12 of the most immunogenic proteins, MSP3.3, MSP10, MSP7.6,
MSP3.10, P12, ARP, P41, MSP5, GAMA, RIPR, MSP1, and CyRPA, for further analysis.

The breadth of antibodies increases with age and infection
We tested these 12 proteins against a larger panel of 144 SI samples. Antibody seroprevalence
ranged from 31.3% (P41) to 100% (MSP1) (S1 Table). MSP1 was recognized by 100% of samples,
and P12, GAMA, MSP3.10, and RIPR were each recognized by at least 85% of the children, 89%
of the adolescents, and 93% of the adults (Fig 2A). Children recognized fewer proteins (mean
7.06) than adults (mean 9.65; P<0.001) or adolescents (mean 8.08; P = 0.051) (Fig 2C). Similarly,
individuals with a current infection detected by both PCR and LM (mean 8.90; P = 0.005), but
not those with only PCR+ infections (mean 8.33; P = 0.140), had antibodies to significantly more

Fig 1. IgG reactivity to 34 P. vivaxmerozoite proteins in Solomon Islanders. Boxplots showmedian optical density (horizontal bar),
interquartile range (boxes), range (whiskers), and outliers (open circles). Antibodies to the Cd4-tag are represented as mean (solid red line) and
mean + 2 standard deviations (dashed red line). Clear boxes represent adolescents (10–19 years; n = 22;) and striped boxes represent adults (20–
50 years; n = 24). Asterisks indicate 29/34 proteins for which the population mean antibody level was significantly higher than to Cd4 alone. ¶
symbols indicate 7/34 proteins for which IgG levels differed significantly between adolescents and adults. P values are fromMann-Whitney U tests
and were deemed significant if <0.05.

doi:10.1371/journal.pntd.0004639.g001

IgG to P. vivax Antigens and Protection

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004639 May 16, 2016 6 / 15



proteins than noninfected individuals (mean 7.56), suggesting a limited effect of recent infections
even in adults (Fig 2B and 2D). We applied a serocatalytic model to the seroprevalence data to
investigate the kinetic (seroconversion and seroreversion rates) of IgG to antigens with<85%
prevalence in children. The estimates are shown in S1 Text.

Antibody levels reflect both cumulative and current exposure
The magnitude of the cumulative levels (i.e., sum of IgG levels to all antigens, per individual),
as well as IgG levels to all individual antigens were strongly associated with age, increasing

Fig 2. Seroprevalence profiles for 12 P. vivaxmerozoite antigens in Solomon Islanders. For each antigen, positivity was
defined as 2 standard deviations above the mean optical density from Australian malaria-naïve adults. (A) and (B) show heatmaps
of seroprevalence by age group (5–9 years, n = 48; 10–19 years, n = 48; 20–80 years, n = 48) and by P. vivax infection status (Not
infected, n = 48; PCR+, n = 48; PCR+ LM+ n = 48), respectively. Each row shows antibodies observed in all individuals to a single
protein, and each column shows antibodies observed in a single individual to all proteins. (C) and (D) show density plots
representing the number of antigens recognized in each of the age and infection status groups, respectively. Normally-distributed
density curves are shown in dark green. P values are from negative binomial regression and were deemed significant if <0.05.

doi:10.1371/journal.pntd.0004639.g002
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significantly from children to adults (P<0.001–0.027) (Fig 3A). The magnitude of the cumula-
tive antibody levels was also increased in the presence of current infection at either lower (PCR
+ only, P = 0.008) or higher parasite density (PCR+ LM+, P = 0.001) (Fig 3B). Individually,
lower-density infections were associated with higher IgG levels to CyRPA (P = 0.022), GAMA
(P = 0.015), and MSP3.10 (P = 0.013) only, while higher-density infections were associated
with higher IgG levels to a larger number of antigens: CyRPA (P<0.001), GAMA (P = 0.015),
MSP3.10 (P = 0.032), P12 (P = 0.020), P41 (P = 0.035), MSP1 (P = 0.020), MSP10 (P = 0.039),
and RIPR (p = 0.019) (Fig 3B). These data indicate that the antigens in our panel are good
markers of cumulative exposure, and that some of them are also markers of current infection.

Predictors of antibody levels to P. vivaxmerozoite proteins
In multivariate analysis, age remained strongly associated with increased cumulative and IgG lev-
els to all individual antigens (P<0.001–0.023) (S2 Table). Lower-density infections remained
associated with increased IgG levels to CyRPA (P = 0.012) and GAMA (P = 0.007), and higher-
density infections remained associated with increased IgG levels to CyRPA (P<0.001), GAMA

Fig 3. Magnitude of IgG levels to 12 P. vivaxmerozoite proteins in Solomon Islanders. Boxplots showmedian optical density (horizontal bar),
interquartile range (boxes), range (whiskers), and outliers (open circles). (A) shows data according to age group (5–9 years, n = 48, clear boxes;
10–19 years, n = 48, grey boxes; 20–80 years, n = 48, striped boxes). (B) shows data according to P. vivax infection status (Not infected, n = 48,
clear boxes; PCR+, n = 48, grey boxes; PCR+ LM+, n = 48, striped boxes). P values are from ANOVA and were deemed significant if <0.05.

doi:10.1371/journal.pntd.0004639.g003
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(P = 0.005), P12 (P = 0.017), P41 (P = 0.031), MSP1 (P = 0.014), and RIPR (P = 0.012). For
MSP5, IgG levels were higher only in adults with a current infection (P = 0.022) (S2 Table).

We compared IgG levels against a large number of other epidemiological variables (e.g.,
region, clinical symptoms, and socioeconomic indicators), but none of them were significantly
associated with differences in antibody levels for any antigen (S2 Table). The use of ITNs was
the only variable that had any significant association, with the use of ITNs in previous years
associated with reduced IgG levels to RIPR (P = 0.030), MSP1 (P = 0.024), and MSP3.3
(P = 0.015) (S2 Table). If ITN use is considered a marker for exposure, this also indicates that
the levels of antibodies targeting these antigens are particularly sensitive to recent exposure.

Associations of antibody levels with cumulative and current exposure in
PNG children
To establish whether these associations were population-specific or more broadly generaliz-
able, we tested IgG levels to a subset of 6 antigens, chosen on the basis of immunoreactivity and
expression levels, in a sub-cohort of 230 PNG children. The median age of the population was
1.7 years (IQR 1.3–2.5), and the prevalence of P. vivax infection at baseline was 55% by PCR.
IgG levels to ARP, CyRPA, and PVX_081550 were positively associated with age (r = 0.15–
0.25; P = 0.001–0.027). For PVX_081550, stronger increases in IgG with age were observed in
children without current infections (r = 0.33; P<0.001) than with current infections (r = 0.18;
P = 0.048) (S3 Table). A current P. vivax infection was associated with higher IgG levels to
CyRPA (P<0.001), P12 (P<0.001), P41 (P = 0.001), and PVX_081550 (P = 0.001) (S3 Table).
When considering cumulative exposure as a product of age and the number of P. vivax infec-
tions acquired over time (molFOB), increasing IgG levels with cumulative exposure to
PVX_081550 (r = 0.41 P<0.001) and CyRPA (r = 0.14, P = 0.032) are observed in children
without current infections (S3 Table).

Antibody levels and risk of P. vivaxmalaria
During the 16 months of follow-up of the PNG cohort, children experienced an IRR of 1.25
(95%CI 1.08–1.45) malaria episodes with P. vivax>500 parasites/μL/year at risk. We applied the
unadjusted GEE model to test whether responses to specific antigens were associated with a
reduced risk of infection. Children with high levels of IgG to PVX_081550 (IRRH 0.41; P<0.001)
and P41 (IRRH 0.63; P = 0.019) both had a significantly lower risk of clinical P. vivaxmalaria
(Table 1). When adjusting for confounders, medium and high levels of IgG to PVX_081550
(IRRM 0.74, P = 0.041; IRRH 0.46, P<0.001), and high IgG levels to P41 (IRRH 0.56; P<0.001)
and P12 (IRRH 0.65; P = 0.012) were associated with protection. No association with protection
was observed for levels of IgG to GAMA, CyRPA, and ARP (Fig 4; Table 1).

IgG levels to the 3 antigens associated with protection were significantly correlated
(r = 0.34–0.66; P<0.001) (S4 Table), suggesting co-acquisition. In multivariate analyses, only
high levels of IgG to PVX_081550 remained strongly associated with reduced risk of P. vivax
episodes (IRRH 0.54; P = 0.001), indicating that this antigen may be a key target of natural
immunity or a good marker of immunity. There were no significant associations between levels
of IgG to any of these 3 antigens and risk of clinical episodes caused by P. falciparum with any
parasite density (IRR 0.92–1.18; P>0.10) (S6 Table).

Protection increases with increasing antibody repertoire
There was a very strong association between increasing antibody repertoire and increase in pro-
tection. Each increase in 1 unit of the breadth score (described in Methods) was associated with a
reduction of approximately 7% in the risk of P. vivax episodes (IRR 0.93; 95%CI 0.90–0.97;
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P = 0.001). However, once we accounted for differences in IgG to PVX_081550, the breadth effect
was no longer significant (IRR 0.98; 95%CI 0.93–1.04; P = 0.49), while high levels of IgG to
PVX_081550 remained associated with protection (IRRH 0.51; 95%CI 0.33–0.80; P = 0.004). This
finding suggests that IgG level to PVX_081550 is a key marker of protective immunity.

Discussion
The discovery and rational prioritization of P. vivax proteins as candidates for inclusion in a
future P. vivax vaccine would be greatly facilitated by a comprehensive and systematic charac-
terization of antibody response to P. vivax antigens in exposed individuals. Although

Table 1. Association between levels of IgG to P. vivaxmerozoite proteins and protection against clinical malaria (with parasite density >500/μL of
blood) in Papua NewGuinean children.

Antigen uIRR 95%CI P value aIRR* 95%CI P value

PVX_081550 M 0.76 0.54 1.05 0.10 0.74 0.55 0.99 0.041

PVX_081550 H 0.41 0.29 0.60 <0.001 0.46 0.33 0.64 <0.001

ARP M 0.93 0.66 1.32 0.68 0.98 0.73 1.32 0.91

ARP H 1.00 0.69 1.46 0.98 0.88 0.63 1.23 0.47

GAMA M 1.12 0.80 1.57 0.51 1.03 0.75 1.40 0.87

GAMA H 0.82 0.55 1.23 0.34 0.75 0.54 1.04 0.08

P41 M 0.96 0.68 1.36 0.83 0.89 0.67 1.18 0.41

P41 H 0.63 0.43 0.93 0.019 0.56 0.41 0.77 <0.001

P12 M 1.05 0.75 1.47 0.79 0.96 0.71 1.29 0.77

P12 H 0.69 0.47 1.02 0.06 0.65 0.47 0.91 0.012

CyRPA M 1.06 0.76 1.46 0.74 1.17 0.88 1.57 0.28

CyRPA H 0.88 0.59 1.30 0.52 0.81 0.58 1.12 0.20

Abbreviations: M = Medium antibody levels; H = High antibody levels; 95%CI = 95% confidence interval; uIRR = Unadjusted incidence rate ratio;

aIRR = Adjusted incidence rate ratio.

*Adjusted for individual differences in exposure (molFOB), age, village of residence, and season.

P values, uIRR, and aIRR from negative binomial GEE models. P values <0.05 were deemed significant.

doi:10.1371/journal.pntd.0004639.t001

Fig 4. IgG to 6 P. vivaxmerozoite proteins and risk of clinical malaria in PNG children.Data are plotted
as incidence rate ratios and 95% confidence intervals, adjusted for exposure (molFOB), age, season, and
village of residency. Clinical malaria was defined as axillary temperature�37.5°C or history of fever in the
preceding 48 hours with a current P. vivax parasitemia >500 parasites/μL. P values are from negative
binomial GEEmodels and were deemed significant if <0.05.

doi:10.1371/journal.pntd.0004639.g004
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epidemiological associations do not necessarily denote causality, the identification of such ‘pro-
tective’ antibody targets in naturally exposed individuals can be used to prioritize antigens or
antigen combinations before testing their efficacy and thus potential vaccine suitability in func-
tional studies. Such sero-epidemiological discovery and down-selection are particularly impor-
tant for P. vivax, where the lack of stable in-vitro culture and genetic manipulation techniques
[6] make functional studies and biology-drive discovery difficult, low throughput, and thus
very expensive. To date, only a very small number of P. vivax antigens, such as DBP, MSP1,
MSP3, MSP9, and AMA1 have been investigated [21, 35, 36]. The complexity of naturally-
acquired immunity against P. vivax [37] and the likelihood that it’s multifactorial and involves
antibodies against several antigenic targets, unlikely to be identified in only one study, highlight
the importance of conducting more screening studies. Investigating the large number of poten-
tial targets found in the parasite proteome, however, has been constrained in large part by the
difficulty of producing natively-folded recombinant P. vivax antigens. We have leveraged our
recent development of a large library of immunoreactive merozoite surface and secreted entire
ectodomain proteins [22] to perform systematic studies of reactivity to P. vivax blood-stage
antigens in 2 Asia-Pacific populations.

The vast majority of these proteins (28/34) were recognized by plasma IgG from asymptom-
atic (including noninfected) adolescent and adult Solomon Islanders. Of these, 27 were also
recognized by pooled IgG from Cambodian P. vivaxmalaria patients [22]. Although there are
individual differences between study populations (e.g., PVX_116675 was only recognized in SI,
and PVX_110950 and RhopH3 were only recognized in Cambodia), the use of a large protein
library for the first time confirms the broad immunogenicity of a large number recombinant
proteins, and also that the pool of potential vaccine targets is much deeper than has been stud-
ied to date.

For 12 highly-immunogenic proteins (MSP3.3, MSP10, MSP7.6, MSP3.10, P12, ARP, P41,
MSP5, GAMA, RIPR, MSP1, and CyRPA), we confirmed that IgG levels increase more strongly
with age, and thus cumulative life-time exposure, than with current infection. Lower and
asymptomatic parasitemias are prevalent in SI, a sign that despite significant recent reductions
in transmission, residents have acquired significant immunity that is characterized by long-
lasting, stable antibody levels. In several studies, antibodies to the P. falciparum homologs of
some of the proteins included in our study were shown to be strongly associated with clinical
immunity to P. falciparum [38, 39]. It is therefore likely that the observed high antibody levels
to these P. vivax proteins contribute to the strong levels of clinical immunity in the SI
community.

The associations of clinical immunity with antibodies to 3 antigens (P12, P41, and
PVX_081550) were confirmed in a cohort of young, semi-immune PNG children. The
observed reductions in risk of P. vivaxmalaria were comparable to those associated with high
antibody titers to P. vivaxMSP3α and MSP9 [34]. In P. falciparum, P12 is a GPI-anchored
rhoptry protein [40], while P41 is localized to the merozoite surface [41]; together, they form a
heterodimer and are thought to be involved in reticulocyte invasion, although neither is essen-
tial for parasite growth in vitro [42]. Both are strongly recognized by natural immunity, and
antibodies have also been associated with clinical protection [38, 39]. It is likely that P. vivax
P12 and P41, which also form a heterodimer [22], have comparable functions.

The protein with the strongest association with protection was the hypothetical protein,
PVX_081550. Its P. falciparum homologue has recently been identified as StAR-related lipid
transfer protein [43], able to transfer different lipids between phospholipid vesicles. In P. falcip-
arum, this protein localizes to the parasitophorous vacuole (PV); there is some evidence that it
may be transferred into the apical organelles of mature merozoites, where it may play a role in
forming the PV during the invasion process [43]. Although the P. falciparum protein was also
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found to be immunogenic [44], it is unclear whether antibodies to it interfere with parasite
function (e.g., block erythrocyte invasion) or are simply elicited by proteins released from the
PV upon schizont rupture and thus serve only as markers of an individual’s immune status.
Both proteins are polymorphic, with nonsynonymous/synonymous SNP ratios of 1.9–2.3
(PlasmodDBv26 [45]). Further studies are now needed to elucidate the function of both P. fal-
ciparum and P. vivax StAR-related lipid transfer proteins, and importantly to determine
whether antibodies to P. vivax PVX_081550 are functionally protective or simply a useful
marker of a child's overall immune status.

Our studies have confirmed that a large array of P. vivaxmerozoite antigens are targets of
natural humoral immunity, and that antibodies to little-studied proteins may have equivalent
or even stronger associations with reduced malaria risk in naturally exposed populations in
comparison to current leading vaccine candidates. Further studies, including both in-depth
evaluations of their association with protection in longitudinal cohort studies in other trans-
mission settings and functional studies (to the extent this is currently possible for P. vivax), will
be required to determine the potential of these proteins as vaccine candidates, markers of
immune status, markers of cumulative exposure, or some combination thereof.
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