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Abstract 7 

The effect of water on the kinetics of the liquid-phase dehydration of 1-pentanol to di-n-8 

pentyl ether (DNPE) and water over Amberlyst 70 is revisited. To explain the strong 9 

inhibitor effect of water, two approaches were compared. Firstly, a model stemming from a 10 

Langmuir- Hinshelwood-Hougen-Watson (LHHW) mechanism was used, wherein the 11 

inhibitor effect of water was explained by the competitive adsorption of water and pentanol. 12 

Secondly, a modified Eley-Rideal (ER) model that includes an inhibition factor, in which a 13 

Freundlich-like function is used to explain the inhibitor effect of water by blocking the 14 

access of pentanol to the active centers. Both models fitted data quite well, although the 15 

best results were obtained with the modified ER model. The activation energy was 118.7 ± 16 

0.2 kJ/mol for the LHHW model and 114.0 ± 0.1 kJ/mol for the modified ER one. 17 
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1. Introduction 22 

Adsorption of chemicals on the solid surface is the key step of solid catalyzed reactions, 23 

so that interaction among one or more of the different species present in the medium with 24 
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catalyst surface is essential for the reaction to proceed. Frequently, some reactant or 25 

reaction product adsorbs preferably determining in this way the catalyst activity, i.e. polar 26 

species onto sulfonic styrene/divinylbenzene (S/DVB) resins. In such catalysts acidity and 27 

accessibility of sulfonic groups to catalyze the reaction change over reaction medium 28 

composition because of polymer swelling by the preferential adsorption of species such as 29 

water or alcohol what decreases, as a result, the reaction rate1. 30 

This rate-inhibiting effect of polar species on S/DVB resins is advantageously used to 31 

maximize the yield of the intermediate product in series reactions by limiting the yield of 32 

final products, e.g. alcohols2,3 and water4,5 are reported as selectivity enhancers in olefin 33 

oligomerization, favoring dimers formation and hindering that of trimers and higher 34 

oligomers. More often, this effect is undesirable when such polar species, in particular 35 

water, are reaction products. As a highly polar species, it preferably adsorbs on sulfonic 36 

S/DVB resins with a rate-inhibiting effect both in gas phase6 and in liquid phase reactions7-37 

19. Kinetics of liquid-phase reactions with water formation (alcohol dehydration to olefins, 38 

bisphenol A synthesis, etc) is complex since the very first amount of water produced 39 

inhibits the reaction, whereas further water released acts as a solvent7, what swells the resin 40 

and increases accessibility to inner active centers. This process is accompanied 41 

simultaneously by a transition from general to specific acid catalysis, generally slower7. 42 

The rate-inhibiting effect of water is also ascribed to its great affinity for sulfonic groups, 43 

so that it excludes the reactants and suppresses the catalytic reaction almost completely20,21. 44 

However, it is to be noted that, despite its rate-inhibiting effect, water is reported to 45 

improve the catalyst’s lifetime16. 46 

Langmuir-Hinshelwood-Hougen-Watson (LHHW) or its related Eley-Rideal (ER) 47 

kinetic models are widely used to represent rate data of liquid-phase reactions of alcohol 48 
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dehydration to ether10,22-24, but some inaccuracies appear because of the reaction medium-49 

catalyst interaction, specially on catalysts with a flexible backbone as S/DVB resins. To 50 

quantify the effect of such interaction, empirical corrections are suggested in the open 51 

literature. Water effect has been represented by using empirical exponents in the driving 52 

force and the adsorption term of LHHW or ER rate-expressions, i.e. for tert-butanol 53 

dehydration7, esterification of acetic acid with amyl alcohol12 or synthesis of tertiary amyl 54 

alcohol25. In the particular case of liquid-phase etherification reactions, a second approach 55 

is found: water effect on the reaction rate is quantified by splitting off the rate constant, k̂ , 56 

into two factors as a product of the true rate constant, ˆ
ok , and an inhibition factor, which 57 

should take values between 0 and 1 and depends on temperature and water activity, aw, in 58 

the liquid-phase. Such factor is analogous to those mostly used to describe catalyst 59 

deactivation by poisoning and, at first sight, it can be seen as the fraction of active centers 60 

free of water17-19, (1–w), i.e., 61 

    ˆ ˆ ˆ· , 1o w o wk k f a T k           (1) 62 

In a previous work, the liquid phase dehydration of 1-pentanol to DNPE without water 63 

removal was studied on gel and macroporous acidic S/DVB resins, including sulfonated 64 

and over-sulfonated ones26,27. Gel-type and low-crosslinking macroporous resins were 65 

found to be very selective to DNPE and, therefore, they are suitable catalysts for the 66 

reaction. Among tested resins, the thermally stable Amberlyst 70, which is able to operate 67 

up to 463 K, was proposed for industrial use, since it showed the highest conversion and 68 

yield in the temperature range 423-463 K. Its performance in this temperature range was 69 

even better than Nafion NR50 or H-Beta zeolite.  70 
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In a first approach to obtain the reaction kinetics, necessary for reactor design purposes, 71 

it was found that a kinetic model based on an ER mechanism, in which the rate-limiting 72 

step was the surface reaction between adsorbed 1-pentanol and an alcohol molecule from 73 

the liquid phase and without a significant number of unoccupied active centers, represented 74 

reasonably well rate data for all the tested catalysts27:  75 
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KD and KP are the adsorption equilibrium constants of DNPE and 1-pentanol; aD and ap, 77 

their liquid-phase activities, respectively, and k̂  the rate constant. However, at 453 and 463 78 

K some inaccuracies were noted in the case of Amberlyst 70. As a consequence the rate 79 

model should be upgraded, by considering (a) the reverse reaction and (b) the effect of 80 

water in the reaction rate, seeing that water activity does not accounts in eq.(2), despite the 81 

fact that water adsorbs in large amounts in ion-exchange resins. 82 

Lately, equilibrium constants for the liquid-phase dehydration of 1-pentanol to DNPE 83 

were determined experimentally28. Moreover, the inhibiting effect of water on the rate of 84 

the liquid-phase dehydration of 1-pentanol to DNPE was stated experimentally and some 85 

kinetic models including water effect were proposed29. A complete and exhaustive kinetic 86 

study of the reaction including the last findings on the reaction is thus suitable. As a 87 

consequence, the aim of this work is to perform a comprehensive kinetic analysis of DNPE 88 

synthesis on Amberlyst 70 by including both (a) the effect of the reverse reaction and (b) 89 

new rate data obtained in the presence of additional water and ether amounts, in such a way 90 

that it was possible to discriminate a good kinetic model able to predict reaction rate in a 91 

wide range of alcohol, ether and water concentrations. 92 
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2. Experimental 93 

2.1 Materials 94 

1-Pentanol (99% pure, <1% 2-methyl-1-butanol), supplied by Fluka, and bidistilled 95 

water were used without further purification. DNPE ( 99 %) was produced and purified in 96 

our laboratory. Amberlyst 70 (Rohm & Haas), a macroporous sulfonic styrene-DVB resin 97 

stable up to 473K (surface area 29.9 m2/g when dried by successive percolation with 98 

methanol, toluene and isooctane; concentration of acid sites 3 eq H+/kg ) was used as the 99 

catalyst. 100 

2.2 Apparatus 101 

Experiments were carried out in a 100 mL stainless steel autoclave operated in batch 102 

mode. A magnetic drive turbine was used as stirring device and baffles were placed inside 103 

the reactor to improve mixing. Temperature was controlled to within ±1 K by an electric 104 

furnace. The pressure was set at 1.6 MPa by means of N2, in order to maintain the liquid 105 

phase over the whole temperature range. One of the outlets was connected directly to a 106 

liquid sampling valve, which injected 0.2 L of liquid into a GLC chromatograph.  107 

2.3 Analysis 108 

The liquid composition was analyzed by a split operation mode in a HP6890A GLC 109 

apparatus equipped with a TCD detector. A 50m × 0.2mm × 0.5 m methyl silicone 110 

capillary column was used to quantify concentration of 1-pentanol, DNPE, water, 1-111 

pentene, 2-pentene, and branched ethers 1-(1-methyl-butoxy)-pentane, 1-(2-methyl-112 

butoxy)-pentane, 2-(1-methyl-butoxy)-pentane, and 2-(2-methyl-butoxy)-pentane. The 113 

temperature of the column was held at 318 K for 6 min, increased at a rate of 30 K/min up 114 
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to 453 K, and held for 2 min. Helium was used as carrier gas at a total flow rate of 30 115 

mL/min. 116 

2.3 Procedure 117 

Fresh catalyst and 70 mL of 1-pentanol (1-pentanol-water or 1-pentanol-DNPE where 118 

appropriate) were charged into the reactor and, after checking for leakages, heated to the 119 

working temperature. The resin was dried for 1 h in atmospheric oven at 383K, and then for 120 

2 h at vacuum (< 0.1 mmHg). Zero time was set when the reaction medium reached 121 

working temperature. To monitor the concentration variation of chemicals along time, very 122 

small liquid samples, which do not disturb the reacting system, were taken out of the 123 

reactor and analyzed hourly. Reaction rates of DNPE formation were estimated as indicated 124 

elsewhere27, being accurate within ± 5%. On the other hand, in all the experiments mass 125 

balance was fulfilled within ± 2 %. 126 

3. Results and discussion 127 

3.1. Preliminary experiments 128 

Firstly preliminary runs were conducted at 463 K to check that measured rates were free 129 

of mass transfer effects. All the experiments were performed on 1 g of catalyst, since 130 

previous results with the same set-up showed that with a catalyst mass  2 g, measured 131 

rates were independent on the amount of used catalyst27,30. 132 

Diffusion rate of chemicals through porous solids depends on temperature and particle 133 

size. To measure intrinsic reaction rates experimentally, and so have an accurate kinetic 134 

model, it is basic to work within the particle diameter, dp, range where such influence is 135 

negligible. Internal mass transfer influence can be evaluated by testing catalyst batches of 136 

different particle size. Figure 1 (up) plots DNPE mole profile along time for different 137 
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particle size batches, whereas in Figure 1 (down) the initial reaction rate at 463 K is plotted 138 

against the reciprocal of resin mean particle diameter. Open circles correspond to 139 

Amberlyst 70 sieved fractions of 0.316, 0.502, 0.710 and > 0.8 mm, respectively, and the 140 

black rhombus refers to the mean diameter of commercial beads (0.570 mm). As Figure 1 141 

(up) shows, internal mass transfer influence is negligible at 463K within the limits of the 142 

experimental error in the particle size range explored, and therefore also at lower 143 

temperatures, although the DNPE mole profile for dp = 0.7 mm is slightly higher than the 144 

others after 6 h. This fact is ascribed to the accumulation of the experimental error 145 

throughout the whole experiment, since no deviation was observed on the commercial 146 

distribution of particle diameters. 147 

External mass transfer influence was evaluated by performing a series of experiments by 148 

changing stirring speed, N, between 50 and 700 rpm, also at 463K, where such influence 149 

could be more notorious. In Figure 2 DNPE mole evolution versus time at different stirring 150 

speeds and the initial reaction rate versus stirring speed are shown. As can be seen, initial 151 

reaction rates are the same, within the limits of experimental error, for N ≥ 200 rpm, 152 

whereas DNPE mole profiles overlap except when N = 700 and 50 rpm. 153 

As a consequence, to measure intrinsic reaction rates of DNPE synthesis henceforth, 154 

experiments were performed at N = 500 rpm on catalyst samples of 1 g of dry catalyst 155 

having the commercial distribution of particle sizes. 156 

3.2. Experiments starting with pure 1-pentanol 157 

A first series of replicated experiments were done in the temperature range 413 – 463K 158 

starting from pure 1-pentanol27. Figure 3 shows DNPE production along the runs. As 159 

expected, reaction rate is highly dependent on temperature. The slope of nDNPE vs. time, 160 

which is related to reaction rate, diminishes along time due to the effect of the reverse 161 
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reaction and/or some inhibition effect. In all the runs, selectivity to ether was higher than 162 

93%.  163 

As the reaction mixture is non-ideal, kinetic analysis is given in terms of activities of 1-164 

pentanol (aP), DNPE (aD), and water (aW). Activity coefficients were computed by the 165 

UNIFAC-DORTMUND predictive method31. The dependence of the reaction rate as a 166 

function of aP, aD and aW is shown in Figure 4. As seen, reaction rate increases on 167 

increasing aP in the entire range of explored activities and temperatures, whereas it 168 

decreases on increasing aD and aW. These facts suggest that a hyperbolic model, based on a 169 

LHHW or ER mechanism, could explain satisfactorily rate data. Figure 4 (up) suggests that 170 

aP influences chiefly the numerator of such a kinetic model, so promoting forward reaction. 171 

The rate-decreasing effect showed by aD and aW (Figures 4 (middle and down)) can be 172 

attributed to a preferential adsorption onto the resin of the ether and water, and also, as they 173 

are reaction products, to the enhancement of the reverse reaction as the system approaches 174 

to chemical equilibrium32-33. Based on the analysis of the reaction rate dependence, and 175 

considering the adsorption-reaction–desorption process, the following reaction mechanisms 176 

could be proposed: 177 

Mechanism 1: two 1-pentanol molecules adsorbed on an active site, respectively, react 178 

to give the ether and water (LHHW type)  179 

1-PeOH +   ⇌ 1-PeOH· 180 

2 (1-PeOH·) ⇌ DNPE· + W· 181 

DNPE· ⇌ DNPE +  182 

W· ⇌ W +  183 
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Mechanism 2: 1-pentanol from solution reacts with 1-pentanol adsorbed on one active 184 

centre to give the ether adsorbed on the resin surface, the water being released 185 

instantaneously to the liquid phase (ER type) 186 

1-PeOH +  ⇌ 1-PeOH· 187 

1-PeOH· + 1-PeOH ⇌ DNPE· + W 188 

DNPE· ⇌ DNPE +  189 

Mechanism 3: 1-pentanol from solution reacts with 1-pentanol adsorbed on one active 190 

site, the ether being released directly to the liquid phase (ER type),  191 

1-PeOH +  ⇌ 1-PeOH· 192 

1-PeOH· + 1-PeOH ⇌ W· + DNPE 193 

W· ⇌ W +  194 

By assuming that surface reaction is the rate-limiting step, the following kinetic models 195 

were obtained for mechanisms 1, 2 and 3, respectively: 196 

 

2 2

2
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1
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On the basis of these equations, all possible kinetic models derived by considering one 200 

or more factors of adsorption term being negligible were fitted to rate data. A detailed 201 

schedule of models handled can be found elsewhere34,35. For fitting purposes, all the models 202 
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were grouped into two classes, depending on the number of free active centers (see Table 203 

1): 204 

(i) Class I, for which the number of free active centers is considered to be negligible 205 

compared to occupied ones. This fact implies that the unity present in the adsorption term is 206 

removed. 207 

(ii) Class II, where that hypothesis is rejected.  208 

For models of Class I, the surface rate constant, k̂ , and the adsorption equilibrium 209 

constants, KP, KD, and KW, have been grouped into factors, called A, B, and C, for 210 

mathematical fitting purposes. The particular form how constants are grouped depends on 211 

the mechanism (LHHW or ER) and the neglected adsorption term, if any. Concerning the 212 

models of class II, k1 is equal to 2ˆ
PkK  for LHHW models and to ˆ

PkK  for ER models. The 213 

temperature dependence of such factors was defined as follows: 214 

1 1

1 1
, , , exp( )exp - -i iA B C k b b

T T

       
      (6) 215 

where T  is the mean experimental temperature. To take into account the influence of the 216 

reverse reaction, the temperature dependence of the thermodynamic equilibrium constant, 217 

K, was computed as28  218 

783.42
exp 2.18   

 
K

T
        (7) 219 

Fitted parameters of the models shown in Table 1 were b’s, as appeared in Equation 6. 220 

The subtraction of the inverse of the mean experimental temperature was included to 221 

minimize the correlation among fitted parameters bi and bi+1. 222 

From a mathematical point of view, the most suitable model is the one in which the 223 

minimum sum of squared residuals (SSR), residuals randomness, and lower parameter 224 
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correlation is obtained with the minimum number of fitted parameters. On the other hand, 225 

these parameters should have a physicochemical meaning, i.e. rate constant, and adsorption 226 

equilibrium constants, must increase, and decrease, respectively, with temperature, because 227 

reaction activation energy is positive and adsorption enthalpies negative. 228 

Figure 5 shows the goodness of fit in terms of SSRmin/SSR, where SSRmin is the minimum 229 

value obtained for the different models. Obviously, the model with SSRmin/SSR = 1 is the 230 

one with the minimum SSR, i.e. the best mathematical fit, while SSRmin/SSR tends to zero 231 

for worse fits. Models Class II type 4 (from now coded as II-4) with n = 1, II-5 (n = 1, and 232 

2), II-6 (n = 2), and II-7 (n = 2) did not converge or led to results without physicochemical 233 

meaning during the fitting procedure. As seen in Figure 5, there are several candidate 234 

models using the mathematical criterion of minimum SSR, since they led to similar results. 235 

Models II-3 (n = 2) and I-7 (n = 2) were the best ones, but I-5 (n =1 and 2), II-3 (n=1), II-4 236 

(n = 2), and II-6 (n=1) were very close. The main characteristic of all these models stems in 237 

the adsorption term. In all these models, but II-4 (n=2), aw participates in the denominator, 238 

so the influence of water on the reaction rate seems very clear despite they were not much 239 

sensitive to species contribution to the adsorption term, probably because composition of 240 

liquid phase was linked by the reaction stoichiometry, at least up to a point.  241 

Figure 6 shows Amberlyst 70 bead size distribution (Beckman Coulter LS Particle Size 242 

Analyzer). As seen, particle size distributions in air and DNPE are alike, but resin beads 243 

swell about an 8% in 1-pentanol and a 35% in water. Therefore, DNPE hardly adsorbs onto 244 

the resin, but it retains 0.16 mol of 1-pentanol per –SO3H group (computed from data 245 

shown in Figure 6) when it is completely swollen in alcohol, and 4.2 mol of H2O per –246 

SO3H group when swollen in water. Such water amount agrees with the 3.5-3.85 mol of 247 

H2O per –SO3H group adsorbed when resins are in equilibrium with atmospheric air at 248 
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298K36. As adsorption is exothermic, in the working temperature range of Amberlyst 70, 249 

which is above 298K, it retains a smaller water amount, but it is enough to swell the resin 250 

and to enable the reaction to proceed. Accordingly, it can be assumed that, at first, alcohol 251 

penetrates up to some extent in the catalyst and reacts. Released water adsorbs 252 

preferentially onto the resin and it swells, enabling diffusion of 1-pentanol and DNPE 253 

within the catalyst. Subsequently, when there is some water in the reaction system, it 254 

inhibits the reaction, as seen in Figure 4. In his turn, this fact could explain the very slow 255 

reaction rates observed when wet catalyst is used instead a dry one. It is to be noted that 256 

only models I-5 (n=1 and n=2) are in agreement with these observations, since the others 257 

include either the ether in the adsorption term or exclude 1-pentanol.  258 

3.3. Experiments with 1-pentanol/water and 1-pentanol/DNPE mixtures 259 

To stress the effect of water and DNPE on the reaction rate, a set of experiments with 1-260 

pentanol/water and 1-pentanol/DNPE mixtures were performed at 433 and 453 K. Figure 7 261 

plots nDNPE profiles along time of these experiments at 433K. The amount of DNPE 262 

produced decreased dramatically on increasing the initial amount of water, as shown in 263 

Figure 7 (up), whereas it was hardly affected when initial amounts of DNPE were added 264 

(Figure 7 (down)). The same behavior was observed at 453K. 265 

Figure 8 shows the effect of DNPE and water activities on the reaction rate as a function 266 

of the initial w/w % of DNPE or water in the mixture. As Figure 8 (up) shows, the effect of 267 

DNPE on initial reaction rates is not remarkable. So, the weight of aD in the adsorption 268 

term seems to be negligible. Thereafter, as reaction proceeds, the rate decreases 269 

continuously on increasing aD, and the rate-decreasing effect would be due to the progress 270 

of reverse reaction. On the other hand, initial reaction rates are highly sensitive to water 271 

content showing clearly its inhibiting effect (Figure 8 (down)). It is to be noted that for aW ≥ 272 
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0.25 reaction rate decreases very slowly, similarly to MTBE synthesis in a large methanol 273 

excess37. This behavior could be explained by the fact that, at such water levels, reaction 274 

proceeds by a specific acid catalytic mechanism, much slower than a general one7.   275 

Models of Table 1 were fitted to the pool of experiments series done with 1-pentanol, 1-276 

pentanol/water and 1-pentanol/DNPE mixtures. Figure 9 shows the goodness of fit in terms 277 

of SSRmin/SSR. As seen, models I-5 (n = 2) and I-7 (n = 2) yielded the minimum SSR. 278 

However, fitted values of factor B in model I-7 (n = 2) led such factor to value zero in the 279 

whole temperature range. So, the term B·aD was removed from model I-7 (n = 2) becoming 280 

in this way the model I-5 (n = 2). Then, the best kinetic model was, 281 

 
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2

w D
P
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P W

a a
A a

K
r

a B a

   
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 

        (8) 282 

By introducing water and DNPE in the initial mixture, a wider concentration and relative 283 

proportion ranges between species are achieved. This point, together with the fact that aW 284 

and aD ranges were large enough, allows us to find a rate model useful in a large reactant 285 

and product concentration range, unlike Equation 2 that only described satisfactorily the 286 

experimental results for low 1-pentanol conversions and for very small aW range, where 287 

influence of reverse reaction could be neglected. As a consequence, conclusions about the 288 

influence of water and DNPE could be ambiguous. Equation 8 stems from the LHHW 289 

mechanism (mechanism 1), assuming that DNPE adsorption and the fraction of free active 290 

sites are negligible. The noticeable effect of water on the reaction rate is mainly due to its 291 

competitive adsorption with 1-pentanol. Equation 8 represents satisfactorily rate data as a 292 

whole, however some deviations are observed particularly when there is a large amount of 293 
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water in the system i.e. low reaction rates (Figure 10 up). Furthermore, the residual plot 294 

shown in Figure 11 (up) is clearly biased. 295 

3.4. Approach by considering blocking of –SO3H groups by water 296 

A new approach was undertaken following the insight outlined by du Toit and Nicol19: 297 

released water adsorbs strongly on acidic sites, it hinders 1-pentanol adsorption, and the 298 

reaction rate drops. As for LHHW or ER models, the rate constant, k̂ , is a function of the 299 

total amount of available sites. Water effect was modeled, similarly to Eq. 1, by splitting k̂  300 

into a “true” rate constant, ôk , and a function of the fraction of sites free of water (1 - W) 301 

which depends on aW and temperature. Analogously to du Toit and Nicol’s work, a 302 

Freundlich adsorption isotherm was used to consider the amount of adsorbed water, where 303 

n are the sites taking part in the rate-limiting step.  304 

   1ˆ ˆ ˆ· , 1
n

o W o W Wk k f a T k K a            (9) 305 
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           (10) 306 
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1 1
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W W
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Models of Table 1, modified by including the correction factor defined by Equation 9, 308 

were fitted to the rate data. Fitted parameters were b’s from Equation 6, K from Equation 309 

10, and KW1 and KW2 from Equation 11. Therefore, three new parameters where involved in 310 

the fitting procedure. The best modified kinetic model became: 311 
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As seen in Table 1, Equation 12 corresponds to modified model I-1 (n = 1). Equation 12 313 

stems from Mechanism 2 (ER type), by assuming adsorption of DNPE and free active sites 314 

being negligible. Equations 8 and 12 have the same driving force and include 1-pentanol in 315 

the adsorption term. The difference between both models is the role attributed to water. 316 

Equation 8 assumes a strong competitive water adsorption lessening the global reaction 317 

rate, whereas Equation 12 supposes that a part of released water remains in the catalyst 318 

blocking or inhibiting the active centers, what has a reducing effect on the global rate 319 

constant value. 320 

Table 2 shows the values of fitted parameters of Equations 8 and 12, and their standard 321 

errors, estimated by a variation of Jackknife method38. As can be seen, Equation 12 yielded 322 

a better fit than Equation 8, with a decrease of the SSR of about 42% and, as a result, a 323 

more reliable value of the estimated reactions rate is obtained (Figure 10 down). Fitting 324 

improvement could be attributed to the fact that Equation 12 has one more parameter to fit 325 

than Equation 8, and/or that the power-type expression for water adsorption is flexible 326 

enough to properly fit rate data. Apparent activation energies of 1-pentanol dehydration to 327 

DNPE estimated from the variation of the rate constant on temperature were very similar 328 

for both models, taking into account that Jakknife method underestimates standard error. 329 

This would imply that water adsorption hardly influences the sensitivity of the reaction rate 330 

to temperature. It is to be noted that both values are similar to that obtained from 331 

experiments with no initial feed of water fitted to Equation 2 (115 ± 6 kJ/mol)27. 332 

Figure 12 plots the values of correction factor, 
1

1  W WK a , as used in Equation 12 versus 333 

aW in the whole temperature range. The correction factor decreases on increasing 334 

temperature and aW, therefore its effect is higher. It is to be noted that trends of correction 335 
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factor and rDNPE are alike for aW  0.25 for those experiments performed with an initial 336 

amount of water (see Figure 8). For larger aw values, reaction rates tend to a plateau which 337 

is a function of initial water content, whereas the correction factor decreases monotonically. 338 

This could be because Freudlich isotherm is generally valid for low or intermediate species 339 

activities. On the other hand, it is expected that α decrease almost linearly with temperature, 340 

and Kw to be roughly non dependent19,39. Moreover α should be higher than unity. From Kα, 341 

KW1 and KW2 values it is seen that (a) α decreases with temperature, but it is lower than 342 

unity, and (b) KW value at 463 K is nearly twice that of at 413 K. These points suggest that 343 

the fitting improvement is due to the flexibility of the power expression for W and to the 344 

fact that the fitting procedure involved more parameters rather than to a fundamental 345 

insight of Freundlich isotherm. Thus, the kinetic model proposed by Equation 12 is a 346 

pseudo-empirical model rather than a mechanistic one. However, if the correction factor is 347 

considered in terms of catalyst deactivation, KW could be considered as a deactivation 348 

constant. Consequently, from its temperature dependence a pseudo-activation energy for 349 

the water deactivation process of 24.7 ± 0.1 kJ/mol could be computed. 350 

In Table 3, cross-correlation matrices of the fitted parameters for both Equation 8 and 12 351 

are shown. Equation 12 presents a more desirable cross-correlation matrix, as all values 352 

other than diagonal are close to 0. In addition, as seen in Figure 11 residuals distribution for 353 

Equation 12 is nearly random, whereas, in the case of Equation 8, a clearly biased residual 354 

plot is observed. 355 

The kinetic model proposed by Equation 8 is clearly a mechanistic one (LHHW 356 

mechanism), so it could be extrapolated to other operational conditions. On the other hand, 357 

the modified kinetic model proposed by Equation 12 (derived from a ER mechanism) 358 
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explains better the results presented in this work, but due to its pseudo-empirical 359 

background the extrapolation should be done with precaution.  360 

4. Conclusions 361 

Two kinetic models are proposed to explain the dehydration of 1-pentanol to DNPE in 362 

the liquid-phase. Firstly, a classical LHHW model is proposed, based on a mechanism in 363 

which the surface reaction between two adsorbed molecules of 1-pentanol is the rate-364 

limiting step with a significant contribution of 1-pentanol and water adsorption in the 365 

denominator. On the other hand, a modified ER model is proposed, based on a mechanism 366 

in which the surface reaction between one molecule of 1-pentanol from the bulk phase and 367 

one adsorbed 1-pentanol molecule is the rate-limiting step, with a significant contribution 368 

of 1-pentanol in the denominator. The inhibiting effect of water is taken into account with a 369 

factor that modifies the actual intrinsic rate constant, in which a Freundlich-like adsorption 370 

isotherm is used. Both models fitted data satisfactorily, although the best results were 371 

obtained with the modified model. The activation energy was 118.7 ± 0.2 kJ/mol for the 372 

LHHW model and 114.0 ± 0.1 kJ/mol for the modified one. These values are very similar 373 

to the obtained when experiments with initial water and DNPE were not included in the 374 

fitting procedure. 375 

Acknowledgements 376 

Authors are thankful for financial support from State Education, Universities, Research 377 

& Development Office of Spain (Projects PPQ2000-0467-P4-02 and CTQ2004-378 

01729/PPQ). Authors are also grateful to Rohm and Haas for providing the ion-exchange 379 

resin catalyst used in this work 380 

Nomenclature 381 

aj  activity of compound j 382 



 18

A, B, C, k1 grouped factors for fitting purposes 383 
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Figures 503 

Figure 1. Effect of resin particle size on DNPE production (up) and the initial reaction 504 

rate (down) at 463K, N = 500 rpm, 1g dry Amberlyst 70. 505 
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Figure 2. Effect of stirring speed on DNPE production (up) and the initial reaction rate 510 

(down) at 463K, 1g of dried commercial beads of Amberlyst 70. 511 
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Figure 3. DNPE mole profile versus time at temperatures tested. 516 
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Figure 4. Reaction rate of DNPE synthesis as a function of 1-pentanol (up), DNPE 519 

(middle) and water (down) activities in the temperature range explored 520 
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Figure 5. Comparison of the goodness of fit in terms of SSRmin/SSR. 525 
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 30

Figure 6. Particle size distribution in dry air, 1-pentanol, DNPE and water for Amberlyst 528 

70.  529 
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 31

Figure 7. DNPE mole profile versus time for different initial amounts of water (up) and 532 

DNPE (down) in the initial mixture at 433K 533 
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Figure 8. Effect of DNPE (up) and water (down) activities on the reaction rate at 433K 539 

at different initial mixtures 1-pentanol/water and 1-pentanol/DNPE (Dotted lines join initial 540 

reaction rate data)   541 
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Figure 9. Comparison of goodness of fit in terms of SSRmin/SSR when including 547 

experiments with initial amounts of water and DNPE. 548 
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Figure 10. Calculated reaction rates by Equation 8 (up) and by Equation 12 (down) 551 

versus experimental rates in the whole temperature range  552 
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Figure 11. Residuals distribution for Equation 8 (up) and Equation 12 (down). 558 
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Figure 12. Computed correction factor versus aw in the whole temperature range 562 
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Tables 565 

Table 1. Kinetic models tested with n values ranging from 1 to 2  566 

TYPE CLASS I CLASS II 
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Table 2. Parameters of the fitting procedure of Equations 8 (b1 and b2 corresponding to 569 

A and b3 and b4 to B, according to Equation 6) and 12 (b1 and b2 corresponding to 0k̂  ) 570 

 Equation 8 Equation 12 

b1 2.160 ± 0.003 2.122 ± 0.002 

b2 14275 ± 25 13710 ± 15 

b3 0.007 ± 0.006  

b4 2952 ± 38  

Kw1  495 ± 4 

Kw2  2971 ± 49 

K  358 ± 1 

Ea (kJ/mol) 118.7 ± 0.2 114.0 ± 0.1 

SSR 1190 690 

SSR variation over Equation 8 (%) 0 -42 
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Table 3. Correlation matrix of fitted parameters for Equation 8 (bi are the fitting 573 

parameters of factors A and B of the model) and Equation12 (bi and KWi are the fitting 574 

parameters of factors A and KW of the model), respectively. 575 

Equation 8 

 b1 b2 b3 b4 

b1 1    

b2 -0.97 1   

b3 0.85 -0.78 1  

b4 -0.88 -0.84 -0.97 1 

 576 

Equation 12 

 b1 b2 KW1 KW2 K 

b1 1     

b2 -0.04 1    

KW1 0.03 -0.06 1   

KW2 0.13 -0.07 0.32 1  

K 0.10 0.00 -0.22 0.05 1 

 577 
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