Total Synthesis of (+)-Madangamine D**

Roberto Ballette, Maria Pérez, Stefano Proto, Mercedes Amat,* and Joan Bosch

Abstract: Madangamines are a group of bioactive marine sponge alkaloids, embodying an unprecedented diazatricyclic skeletal type. The enantioselective total synthesis of madangamine D has been accomplished, which represents the first total synthesis of an alkaloid of the madangamine group. It involves the stereoselective construction of the diazatricyclic ABC core using a phenylglycinol-derived lactam as the starting enantiomeric scaffold and the subsequent assembly of the peripheral macrocyclic rings. The synthesis provides for the first time a pure sample of madangamine D and confirms the absolute configuration of this alkaloid family.

Sponges in the order Haplosclerida have proven to be a rich source of structurally diverse but biogenetically related alkaloids,[1] most of them displaying significant biological activities. These marine alkaloids comprise a great variety of unusual skeletal types, including an array of complex polycyclic diamine structures bearing macrocyclic rings, such as saraines, ingenamines, manzamines, nakadomarin A, and madangamines.[2] Madangamines are one of the least studied of these alkaloids from the synthetic standpoint,[3] and no total synthesis on this series has been reported so far.[4] The first isolation of an alkaloid of this group, madangamine A, was reported by Andersen in 1994[5] from the marine sponge Xestospongia ingens, collected in Papua New Guinea. A few years later the same team described[6] four new related alkaloids, madangamines B–E,[7] from the same organism, and more recently, Berlinck reported the isolation of madangamine F from the Brazilian sponge Pachychalina alcaloidifera.[8] Madangamines A and F have shown significant in vitro cytotoxicity against a number of tumor cell lines. However, no bioactivity data have been reported for madangamines B–E, and further pharmacological research on this alkaloid group has been thwarted by the minute amounts of alkaloid samples available from natural sources.

Structurally, madangamines are pentacyclic alkaloids with an unprecedented skeletal type, characterized by a diazatricyclic core (ABC rings) bearing three contiguous stereogenic centers, one of them quaternary, and two linear carbon bridges that connect N-7 to N-12.

Figure 1. Alkaloids of the madangamine group.

Figure 2. Synthetic strategy.

* R. Ballette, Dr. M. Pérez, Dr. S. Proto, Prof. Dr. M. Amat, Prof. Dr. J. Bosch
Laboratory of Organic Chemistry
Faculty of Pharmacy and Institute of Biomedicine (IBUB)
University of Barcelona
08028-Barcelona (Spain)
E-mail: amat@ub.edu
Homepage: http://www.ub.edu/sintefarma/

** Financial support from the Spanish Ministry of Economy and Competitiveness (Project CTQ2012-35250) and the AGAUR, Generalitat de Catalunya (Grant 2009-SGR-1111) is gratefully acknowledged. Thanks are also due to the Ministry of Education (Spain) for a fellowship to R.B. and to PharmaMar S.A. (Madrid) for the cytotoxicity assays.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201xxxxxx
C-9 (D ring) and N-1 to C-3 (E ring). The peripheral macrocyclic ring D is different in each madangamine, in size as well as in degree and position of unsaturation, whereas ring E is identical in madangamines A–E but different in madangamine F, which also incorporates a C-4 hydroxy group (Figure 1).

We present herein the enantioselective synthesis of (+)-madangamine D, which provides for the first time a pure sample of this natural product and constitutes the first total synthesis of an alkaloid of the madangamine group. Using a phenylglycinol-derived bicyclic lactam as the starting enantiomeric scaffold, our approach involves the initial construction of the bridged diazatricyclic ABC core common to all madangamines, and the subsequent building of the macrocyclic D and E rings (Figure 2).

The starting enantiopure lactam 2 was easily accessible by cyclocondensation of oxoester 1 with (R)-phenylglycinol, in a process that installs the first stereocenter (C-5 in the madangamine numbering) by dynamic kinetic resolution of the racemic substrate. The key functionalized diazatricyclic intermediates would be prepared from an unsaturated lactam derived from 2, by successive construction of the carbocyclic C and piperidine A rings. Crucial stereochemical issues are the generation of the required B/C cis ring junction, by a stereoselective conjugate addition reaction followed by a ring-closing metathesis process, and the control of the C-9 stereochemistry in the alkylation step. Finally, the assembly of the macrocyclic rings would be accomplished by a ring-closing metathesis reaction (ring D) and a Wittig olefination followed by macrolactamization (ring E).

The overall synthetic sequence is shown in Scheme 1. Lactam 2 was converted in excellent overall yield to unsaturated lactam 3, via an epimeric mixture of intermediate seleno derivatives. A stereoselective, stereoelectronically controlled conjugate addition of an allyl residue led to the cis-diallyl substituted lactam 4, from which the carbocyclic C ring was constructed by a ring-closing metathesis reaction to give the cis-octahydroisoquinolone derivative 5. A stereoselective alkylation from the most accessible face of the β-keto ester moiety of 5 generated the quaternary C-9 stereocenter of 6 and installed a C-9 functionalized carbon chain. At this point, the removal of the phenylethanol moiety from the chiral auxiliary

![Scheme 1](image)

Scheme 1. Enantioselective synthesis of madangamine D. Reagents and conditions: a) LiHMDS, (Boc)₂O, then CH₃HgSeCl, THF, −78 °C, 93%; b) H₂O₂, CH₂Cl₂, rt, 2 h; c) CH₃CH₂CH₂MgBr, CuI, LiCl, TMSCl, THF, −78 °C, 20 h, 82% (from the seleno derivative); d) Grubbs 2nd gen., CH₂Cl₂, rt, 18 h, 80%; e) NaH, (CH₂Cl)₂CH₂Cl, THF, rt, 18 h, 90%; f) NaI, NH₃, −33 °C, 2 min; then LiHMDS, dioxane, reflux, 20 h; then [Boc]O, CH₂Cl₂, rt, 4 h, 45%; g) Et₃N, MgCl₂, CH₂Cl₂, rt, 4 h, NaOAc, DMS, 90 °C, 48 h, 79% (from 7); i) mCPBA, CH₂Cl₂, rt, 5 h; j) Me₂P, THF, 1 h;然后H₂O₂, Et₂O, 20 h, 80%; m) TFA, CH₂Cl₂, rt, 30 min; then CIICO(CH₂)₃CH₂Cl, Et₂N, CH₂Cl₂, 0 °C, 3 h; then rt, 18 h, 92%; n) HCl, THF, rt, 2 h; then KOH, Bu₃P, Ph₃P=CH₂, THF, rt, 20 h, 80%; o) Grubbs 1st gen., CH₂Cl₂, 0.2 mM, reflux, 12 h; p) H₂, Pd/C, EtOH, rt, 24 h; then Dess–Martin, CH₂Cl₂, rt, 4 h, 75% (from 12); q) NaHMDMS, Br⁻(2-Ph)₃P=CH₂CH₂CH=CH₂CO₂Me (15), THF, 0 to 60 °C, 70%; r) Na, naphtalene, THF, −78 °C; s) aq. LiOH, THF, then EDCI, HOBT, DMF/CH₂Cl₂, 0.02 M, rt, syringe pump, 75% (from 16); t) LiAlH₄, THF, rt, 3 h, 68%.
was achieved by successive treatment of 6 with Na in liquid NH₃, which caused the cleavage of the benzylic C–N bond, and LiAlH₄, which brought about the reduction of the resulting unstable α-olylactam. Under the latter conditions, the lactam and ester carbonyl functions were also reduced to give an N-unsubstituted piperidine-3-methanol derivative, which was immediately protected as the N-Boc piperidine 7. In this way, the tert-butoxycarbonyl group not only has provided activation towards the conjugate addition step and allowed the stereoselective alkylation of the 1,3-dicarbonyl intermediate 5, but is also the precursor of the aminomethyl chain required for the closure of the piperidine A ring. This was accomplished by a stereocontrolled cascade aminohydroxylation. To this end, once alcohol 7 was converted to azide 8 via a mesylate, and the cyclohexene double bond was epoxidized, a Staudinger reduction of azide 9 led to an intermediate amino epoxide, which underwent a smooth in situ cyclization. A subsequent protection of the resulting diazatricyclic alcohol led to the N-tosyl derivative 10.

With the functionalized diazatricyclic derivative 10 in hand, the next phase of the synthesis was the construction of the western 11-membered D ring.[13] After benzylation of the C-3 hydroxy group selective deprotection of N-7 in the resulting orthogonally protected diamino derivative, followed by acylation with 7-octenyl chloride, led to tricyclic amide 11. Hydrolysis of the acetal function and Wittig methylation of the resulting aldehyde gave the required dienal derivative 12. A ring-closing metathesis reaction of 12 under diluted conditions using the first generation Grubbs catalyst provided the expected tetracyclic alkene 13 (2:1 mixture of Z/E isomers). A subsequent catalytic hydrogenation, which caused both the reduction of the carbon-carbon double bond and the debenzylolation of the benzyl ether protecting group, followed by Dess–Martin periodinane oxidation of the resulting alcohol led to ketone 14, which served as a platform to construct the eastern 11-membered E ring.

The (Z,E)-unsaturated eight-carbon fragment required to complete the synthesis of madangamine D was incorporated in a straightforward manner by a Wittig reaction using the ylide generated from phosphonium salt 15[16] under strictly anhydrous conditions. Removal of the protecting tosyl substituent in the resulting diastereoisomeric mixture of alkenes 16 (2.2:1 Z/E ratio),[17] followed by hydrolysis of the ester function and macrolactamization, led to pentacyclic dilactam 17. A final LiAlH₄ reduction provided madangamine D. The ¹H and ¹³C NMR data of our synthetic madangamine were coincident with those reported[18] for the natural product (see Tables in the Supporting Information).

To date, the absolute configuration of madangamines has only been inferred by correlation with that of their presumed[1,2,3,18,19] biosynthetic precursors, ingenamines.[18] As our synthetic madangamine D, of unambiguous 2S, 5S, 9R, 12R absolute configuration, has a specific rotation ([α]D + 101.3 (c 0.29, CHCl₃)) with the same sign as in the closely related madangamines A–C,[20] our synthesis confirms the absolute configuration of this alkaloid family.

Madangamine D showed significant in vitro cytotoxic activity against human colon HT29 (GI₅₀ 4.4 μg/mL) and pancreas PSN1 (GI₅₀ 7.4 μg/mL) cancer cell lines, but was inactive against lung NSCLC A549 and breast MDA-MB-231 cancer cell lines at the highest assayed concentration (10 μg/mL).

Using appropriately C-9 substituted diazatricyclic derivatives, the strategy we have developed could be applied to the synthesis of other members of the madangamine group.[20]

Keywords: alkaloids • asymmetric synthesis • nitrogen heterocycles • macrocycles • total synthesis

References:
[7] Madangamines D and E were isolated as an inseparable mixture.
For the sake of clarity, the madangamine numbering is used throughout this manuscript, even for the synthetic intermediates.

For a preliminary account on the construction of the macrocyclic D ring, see: M. Amat, R. Ballette, S. Proto, M. Pérez, J. Bosch, Chem. Commun. 2013, 49, 3149–3151.

For a model study on the construction of the (Z,Z)-unsaturated 11-membered E ring using 15, see: S. Proto, M. Amat, M. Pérez, R. Ballette, F. Romagnoli, A. Mancinelli J. Bosch, Org. Lett. 2012, 14, 3916–3919. Starting from a simplified bicyclic AC ring analog of 14, the Wittig olefination took place with a high stereoselectivity (Z/E, 10:1 ratio).

Madangamine A: [α] = +319 (c 1.0, EtOAc);[16] madangamine B: [α] = +150.7 (c 0.067, EtOAc);[17] madangamine C: [α] = +140.8 (c 0.09, EtOAc).[17]

For model studies on the construction of the western D ring of other madangamines; see Ref. [17].
The first total synthesis of an alkaloid of the madangamine group has been accomplished. Using a phenylglycinol-derived lactam as the starting enantiomeric scaffold, the synthesis of (+)-madangamine D involves the successive construction of the six-membered carbocyclic C and heterocyclic A rings to generate functionalized diazatricyclic ABC intermediates and the subsequent assembly of the peripheral macrocyclic D and E rings.