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Domain growth in a two-dimensional binary alloy is studied by means of Monte Carlo simulation

of an ABV model.

The dynamics consists of exchanges of particles with a small concentration

of vacancies. The influence of changing the vacancy concentration and finite size effects has been
analyzed. Features of the vacancy diffusion during domain growth are also studied. The anomalous
character of the diffusion due to its correlation with local order is responsible for the obtained

fast-growth behavior.

I. INTRODUCTION

The study of growth kinetics in systems rapidly
quenched through a phase transition has been a sub-
ject of vivid interest during the past decade.’® Numeri-
cal studies of simple kinetic Ising models* and Langevin
models® reveal that, in recent times, the nonequilibrium
structure factor scales with the average of the inverse of
the domain size R(t)~!. In this regime, R(t) grows with
time according to a power law R(t) ~ t*, where z is the
growth exponent and it is found to be quite universal: It
depends on only a few parameters and mainly on whether
the order parameter is conserved or not. This feature
enables one to classify, in a limited number of classes,
different systems exhibiting a wide variety of growth pro-
cesses. Measurements on different experimental systems
seem to corroborate the scaling and power-law growth
behaviors.6® Nevertheless, the universality of the expo-
nent is a more controversial point. Indeed, it is worth
noticing that measurements are difficult to perform and
in most cases even to interpret.

A representative problem of growth kinetics is the or-
dering process in an A-B binary alloy quenched from
an initial temperature above its order-disorder transition
temperature T, down to a final temperature 7', below
T.. In this case, immediately after the quench, the sys-
tem is in a disordered state characteristic of the high-
temperature phase. Due to fluctuations, the disordered
state decays to the equilibrium state corresponding to
the temperature T. For a given composition and shal-
low quenches (T. — T << T.) the evolution to equilib-
rium usually initiates through the nucleation and growth
mechanism but for sufficiently deep quenches (T << T),
the early evolution occurs through the spinodal ordering
mechanism. In both cases, at late times, an interpene-
trating array of domain walls separating ordered regions
appears. The number of different ordered regions de-
pends on the ground-state degeneracy. This is the coars-
ening or domain growth regime.

Usually, this problem has been directly mapped on
the spin-exhange kinetic Ising model,'%1! interpreting A
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atoms as spin up and B atoms as spin down, and has been
numerically simulated using the Monte Carlo technique.
For this model, at late times, it is found that R ~ t* with
z = 1/2, which is the expected result for a system with
a nonconserved order parameter (Allen-Cahn law).!?

The spin-exchange dynamics supposes the direct inter-
change of neighboring A and B atoms. This mechanism is
not realistic for the case of alloys, where it is known that
interdiffusion proceeds through vacancies.!® Recently we
have incorporated this vacancy mechanism to study or-
dering kinetics in a 2d binary alloy in a square lattice
undergoing an order-disorder transition.'%'® In this case
only exhanges of A or B atoms with a vacancy are pos-
sible. If only nearest neighbors (NN) vacancy jumps
are allowed, at late times, a logarithmic growth is ob-
tained in agreement with results reported by Mouritsen
and Shah.'®17 This behavior has been attributed to the
trapping of vacancies in ordered regions. Nevertheless if
a small fraction of next-nearest neighbors (NNN) jumps
are permitted, a power-law behavior with an exponent =
greater than 1/2 is found. It has also been shown that
in the domain growth regime dynamical scaling holds.'*
This anomalous fast behavior has been attributed to non-
uniform excitations arising from the interaction of the
system with a heat bath, which modify in a nonlinear
way the time scale.!®

In previous papers,'®!® the dynamics was introduced
by a single vacancy on systems of different sizes. This
made it difficult to separate the effect of vacancy con-
centration from finite-size effects. In this work, we sep-
arately analyze the influence of both effects on the dy-
namical exponent z. Moreover, the special features of
the growth kinetics are related to the characteristics of
vacancy diffusion. The results presented correspond to
2d stoichiometric binary alloys in a square lattice at rel-
atively low temperature. As the fast growth behavior is
attributed to the nonhomogeneity of excitations, we ex-
pect that increasing temperature has an important effect
on the growth kinetics. So, the effect of temperature has
also been studied.

The paper is organized as follows: In Sec. II we in-
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troduce the model. In Sec. III we present the Monte
Carlo simulation details. In Sec. IV we expose the re-
sults and, finally, in Sec. V we discuss the main points
and conclude.

II. MODEL

We have considered the standard ABV model for the
description of an AB binary alloy'®'® with vacancies and
nearest-neighbors (NN) interaction. The system is de-
fined on a 2d square lattice with dimensions L x L and
periodic boundary conditions. On each site we define a
variable S; (i = 1,...,N = L? ) taking values +1, —1,
or 0 if that site is occupied by an A atom, B atom, or a
vacancy (V), respectively. The particle and vacancy con-
centrations are given by ¢4 = N4/N, cg = Ng/N, and
cy = Ny /N, where N4, Np, and Ny are the number of
particles of each kind, which are constant. We have fo-
cused on the stoichiometric case fulfilling c4 ~ cg ~ 0.5
and cy < 4 x 1074, For such a low concentration of va-
cancies the ABV model can be reduced to an Ising-like
model, whose Hamiltonian reads

NN
H=J)5S;, (1)

ij

where the sum is performed over all the NN pairs, and
J is a positive constant in order to ensure the antiferro-
magneticlike ordering of the particles. The ground state
consists of two alternating sublattices filled by A and
B particles respectively. The vacancies are symmetri-
cally distributed on the two sublattices, and have a ten-
dency to cluster, since there is an effective energy differ-
ence J between a separated and a NN-bounded pair of
vacancies. Besides the high degeneracy due to the va-
cancy positions, there is an intrinsic degeneracy due to
the possibility for two kinds of alternating AB domains.
This model exhibits an order-disorder phase transition at
practically the same temperature as the 2d Ising model
(T. ~ 2.26 J/kp). Above this temperature, the system
shows a completely disordered state in which the vacan-
cies show no effective interaction.

III. MONTE CARLO SIMULATION DETAILS

Monte Carlo simulations have been performed using
the standard Metropolis algorithm. The dynamics in
the system is introduced by moving only the vacan-
cies, which can perform jumps to NN and NNN posi-
tions. The existence of jumps to NNN positions has
been shown to be crucial in order to prevent vacancy
trapping phenomena.'® The ratio between the proposed
jumps to the NN positions and the total number of pro-
posed jumps (NN and NNN positions) is taken to be
W = 0.5, which means that the jumps to the eight neigh-
boring positions are equally probable. The dependence
of the results on this parameter has also been studied in a
previous paper!® showing that only when W is very close
to 1 is the kinetics affected. In that case, a logarithmic
growth is obtained at late times.
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The system is quenched from a completely disordered
state (I' = oo) to a temperature T' below T, and its
subsequent evolution is monitored as a function of time,
which is measured in Monte Carlo step (MCS) units. A
MCS counsists of N vacancy jump trials. Although the va-
cancies are selected sequentially in order to improve the
simulation speed, no time correlations have been found
due to this fact. Our definition of a MCS gives a time
scale independent of the number of vacancies in the sys-
tem.

Systems of linear sizes L = 50, 100, 200, 500, and
1000 with periodic boundary conditions have been sim-
ulated in order to study finite-size effects. We have also
studied different vacancy concentrations, ranging from
cy =107% to cy =4 x 107%.

The initial state of the system is generated by ran-
domly placing an equal number of A and B atoms on
the lattice and, after, uniformly picking up Ny parti-
cles. Most of the simulations have been performed at
T* = kgT/J = 1.0, which is well below the critical tem-
perature T,.

The following quantities have been measured after each
MC step.

(a) Excess energy per site AE = [E(t) — Eeq]/N, where
E(t) is the total energy of the system, and E.q is the
energy of the system when equilibrium is reached. This
value has been measured after long time simulations (~
10% MCS’s) and within a relative accuracy of 10~* shows
no difference with the exact values for the 2d Ising model.

(b) Order parameter m = [>, S;sgn(¢)] /N, where
sgn(z) takes alternating values +1 and —1 over the square
lattice in a chessboardlike way.

(¢) Number of vacancy-vacancy exchanges per site
®yyv. This quantity is measured, in the case of having
more than one vacancy on the system, in order to an-
alyze if time corrections are needed due to the possible
nonphysical significance of such exchanges.

(d) Effective vacancy diffusion constant D(t), which is
defined, for a system with a single vacancy, as

N
ple) = Zh e =r0)* (2

where rj, indicates the vacancy position at the kth-jump
proposition during the MC step and rq indicates the ini-
tial vacancy position at the beginning of the MC step.

The quantities above are averaged over a large number
of independent runs (around 75 runs for L = 50 and 100,
35 runs for L = 200, 20 runs for L = 500, and 15 runs for
L = 1000), starting with different random number gener-
ator seeds. These sets of runs do not include those that
lead to final “slab” configurations corresponding to two
competing domains separated by flat interfaces. Such
slab runs represent 30% of the total number of runs per-
formed. For the effective vacancy diffusion constant, the
averages have been increased up to 400 independent runs
for L = 100 and 200 runs for L = 500.

Simulations have been carried out on an IBM
3090/600VF computer and have taken around 200 CPU
hours. We have designed an improved algorithm which



48 MONTE CARLO STUDY OF THE RELATION BETWEEN . .. 9323

achieves a speed of 10 MCS’s/min in a 1000 x 1000 sys-
tem.

IV. RESULTS

The existence of scaling in a broad temporal regime
has been tested in a previous work by measuring the
structure factor evolution. Figure 1 shows a typical log-
log plot of the excess energy AE and of the order pa-
rameter m versus time, corresponding to a system with
L = 200 and Ny = 16. Three different regimes can
be distinguished. First an initial transient regime (0-50
MCS’s) in which ordered domains separated by domain
walls are formed. Second a domain growth regime (50—
1000 MCS’s) in which scaling holds and the excess energy
and the order parameter show a power-law dependence
with time,

AE ~t~%, m ~ t%op, (3)

and finally a finite-size effect regime in which the ex-
cess energy shows a very fast decrease and the equi-
librium value E.q is reached. In the intermediate regime,
if scaling holds and the excess energy only depends on
the amount of interface present in the system, the ex-
ponents measured from the order-parameter evolution
Zop and from the excess energy evolution z. must sat-
isfy Zop = %z¢,2° where d is the space dimensionality.
We have checked such a relation for most of our simula-
tions and found that it is always fulfilled within the errors
of the fitted exponents. Since the statistical error asso-
ciated to the order parameter evolution is greater than
the error associated to the energy, we concentrate on the

measurement of the exponent fitted from the excess en-
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FIG. 1. Typical log-log plot of the excess energy AFE and

order parameter m versus time for a system of size L = 200
and Nv = 16. Data correspond to an average over 33 different
processes. The lines are linear square fits.

ergy evolution. In the following we will refer to the .
exponent as the growth exponent z.

A. Vacancy concentration dependence

We have performed runs in systems with different num-
bers of vacancies in order to analyze the dependence
of the growth exponent with the vacancy concentration.
Figure 2 shows the excess-energy evolution in a log-log
plot for a system with L = 500 and vacancy concentra-
tions cy = 4 x 10~%, 10~%, 2.5 x 10~5, and 4 x 10~°,
together with the fitted linear behaviors. It can be seen
that the slopes are nearly constant. Table I shows the fit-
ted exponents corresponding to all the studied cases for
different sizes and concentrations. The dependence of =
with the concentration of vacancies is very small. A little
systematic decrease of = for increasing cy can, however,
be appreciated. Such decrease could be associated to
the existence of vacancy-vacancy exchanges during the
simulation whose physical meaning could be controver-
sial. For this reason we have studied the statistics of the
number of vacancy-vacancy exchanges ®yy during the
simulation. In Fig. 3 we present the evolution of ®yy as
a function of time. The data correspond to a system with
L = 1000 and Ny = 400, averaged over 13 independent
runs. The behavior of ®yy can be understood in terms
of the formation of domain walls. At the beginning of
the evolution, when the system is completely disordered,
one has ®yy ~ 4 x 1074, which is the expected value
corresponding to the case in which there is no vacancy-
vacancy correlations. During the first 100 MC steps an
effective attraction between the vacancies appears due to
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FIG. 2. Log-log plots of the evolution of the excess energy
AFE versus time for a system with size L = 500 and different
vacancy concentration cy. Data correspond to an average
over 20 different runs. The curves are shifted one decade in
order to clarify the picture. The lines are linear square fits
whose slope is nearly constant.
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TABLE I. Fitted growth exponents z for systems with different sizes L and different vacancy
concentrations cy.
cv 4x10"* 10°° 2.5 x 107° 4x107° 107°
L
50 0.98 £+ 0.02
100 0.90 £+ 0.02 0.91 £ 0.02
200 0.73 £ 0.02 0.76 £ 0.02 0.80 £ 0.02
500 0.65 £ 0.02 0.67 + 0.04 0.67 £+ 0.02 0.75 £+ 0.03
1000 0.67 £ 0.02 0.69 + 0.03

the combination of two effects: the formation of domain
walls and the tendency of the vacancies to stay in the
domain walls. The total length of domain walls has a
maximum just before the domain growth regime starts.
During this regime the number of domain walls decreases,
which implies a decrease in ®yy. Although the time evo-
lution of ®y v is important, its absolute value, even at the
maximum, is very small compared to the number of total
proposed exchanges. We have checked that the possible
corrections to the time scale due to this effect are irrele-
vant.

B. Finite-size dependence

Figure 4 shows five different evolutions of the excess
energy decay corresponding to the same vacancy con-
centration cy = 4 x 107 and systems of size L = 50,
100, 200, 500, and 1000. The finite-size effects appear
at increasing times for increasing sizes as expected. A
dependence of the slope of the fitted lines with L can be
appreciated. This effect is most clearly seen in Fig. 5,
which shows the exponents of Table I as a function of L~
(different symbols correspond to different vacancy con-
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FIG. 3. Number of vacancy-vacancy exchanges per site

®dyyv as a function of time. The arrow indicates the value
corresponding to the case in which there is no correlation
between vacancies. Data correspond to a system with L =

1000 and Ny = 400 averaged over 13 independent runs.

centrations). There is a clear tendency for the exponent
to decrease for increasing system sizes. Such a strong
dependence with the system size is never seen in the case
of the standard Kawasaki exchange mechanism. All the
fitted exponents are clearly above the Allen-Cahn value
z = 0.5. Moreover, the results for the L = 1000 case give
an exponent slightly higher (within the data scattering)
than the one corresponding to L = 500. This seems
to indicate that the limiting value may also be larger
than 0.5, although the Allen-Cahn value cannot be ex-
cluded from these data. Nevertheless, theoretical bounds
to this L — oo value can be obtained from consideration
of the vacancy diffusion mechanism.?! If a vacancy per-
forms a random walk (homogeneous and without mem-
ory), its mean-square displacement ,/(r2) increases as
tY with y = 0.5 in any dimension. Causality implies
that this value gives an upper limit to the growth expo-
nent Tmax = 0.5. Nevertheless, since the vacancy path is
correlated with ordering, it cannot be considered to be
completely random. In the extreme case, in which the
vacancy would perform a self-avoiding walk (it never re-

W
<
10 ¢
\“~\
b0
'] L
01
01 T ST S IR U OOy
0.0 1 10 100 1000 10000
t(MCS)
FIG. 4. Log-log plots of the evolution of the excess energy

AFE versus time for systems of different sizes L = 50, 100,
200, 500, 1000, and cy = 4 x 10™%. The curves are shifted
one decade in order to clarify the picture. The lines are linear
square fits whose slope increases for decreasing sizes.
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FIG. 5. Fitted growth exponents for different system sizes

and vacancy concentrations, as a function of L™, The differ-
ent symbols correspond to cy = 4 x 10™* (W), cv = 107 (o),
cv =2.5%x107° (A), cv =4 x 107% (O), and cv = 107° (o).

turns to points visited before), /(r?) ~ t¥ with y = 0.75
in a 2d system, giving an upper bound za.x = 0.75. Ac-
tually, the diffusion of the vacancy is a mixture of both
processes. Its self-avoiding character comes from the fact
that the vacancies prefer to stay in the disordered regions.
As a consequence they have little tendency to return to
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FIG. 6. Log-log plot of the effective diffusion constant D

versus time for systems of L = 100 (+) and L = 500 (o) with
a single vacancy. Data correspond to an average over 400
and 200 independent runs, respectively. The bottom curve
shows the linear dependence in the domain growth regions,
which are indicated by arrows. The straight line is a linear
fit to both sets of data simultaneously. The upper curves are
shifted one decade for each one.

the places that have been visited, since such places are
already ordered. This means that in the ordered regions
the walks are completely random and less frequent than
in the interfaces, where they are quite self-avoiding. Us-
ing a generalized scaling hypothesis, one can admit that
+/(r?) ~ R, which implies that = y. This is equivalent
to saying that the growth exponent reaches its causality
upper bound value when scaling holds.

Figure 6 shows the effective diffusion constant D de-
fined in Eq. (2), as a function of time, for systems of
sizes L = 500 and 100 with a single vacancy. Arrows
indicate the domain growth regime, where the excess en-
ergy shows a power-law dependence with time. It can
be seen that D is not constant, which indicates that the
walk is not a random one. Fitting a power-law depen-
dence D ~ t* renders a ~ 0.15. This value seems to
be quite independent of the system size L. This result
implies that 1/(r?) ~ t¥ with y = (o + 1)/2 ~ 0.6. Tak-
ing into account the above scaling argument, this gives
rise to a growth exponent  ~ 0.6, which is in reasonable
agreement with the tendency of the data in Fig. 5.

V. DISCUSSION AND CONCLUSIONS

The results presented in the preceding section reveal
some special features of domain growth in alloys under-
going an order-disorder transition when atomic elemen-
tary movements proceed through a vacancy mechanism.
First, during the ordering process the vacancy shows an
anomalous diffusion, which can be attributed to the non-
homogeneous path of the vacancies arising from its cor-
relation with local order.® This is mainly due to the fact
that at low temperatures, when the entropic contribution
is negligible, it is favorable for the system to locate the
vacancies in disordered regions (domain boundaries). Be-
cause NNN jumps are permitted, vacancies follow a ran-
dom walk in the ordered regions, while the path has some
self-avoiding character in the disordered ones. The fast
growth exponent = obtained seems to be closely related
to this anomalous character of the vacancy diffusion.

Second, when the system contains more than one va-
cancy, and their concentration is small, our results show
that each vacancy behaves independently of the rest.
That means that vacancy-vacancy correlations are small
enough to have no influence on the growth process. This
explains why the domain growth exponent shows very
little dependence on the vacancy concentration.

Third, the growth exponent has been found to be
strongly influenced by finite-size effects. This dependence
of  on L, which is never seen when the dynamics is intro-
duced via the standard Kawasaki exchange mechanism,
may be associated with the effect of the periodic bound-
ary conditions on the vacancy walk. Nevertheless our
results indicate that, even in the L — oo limit (for a
given concentration of vacancies), z is greater than 0.5.

We expect that any change in the system, which makes
the path of vacancies more homogeneous, will reduce the
growth exponent towards the Allen-Cahn value z = 0.5.
This will happen at high temperature when entropic ef-
fects play a relevant role. In other words, high enough
temperatures are expected to reduce the self-avoiding
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FIG. 7. Growth exponents as a function of the reduced

temperature for systems of sizes L = 100 (A) and L = 200
(e) with a single vacancy.

character of the vacancy path in the disordered regions.
We have checked this by analyzing the temperature de-
pendence of the growth exponent . Figure 7 shows the
fitted exponent for systems of L = 100 and 200 as a func-
tion of temperature. The results clearly show that when

T approaches T., z tends to the Allen-Cahn value. Sim-
ulations have not been performed at temperatures too
close to the critical temperature in order to avoid the ef-
fects coming from the critical slowing down phenomenon.
We have also checked the tendency for the exponent a to
decrease when the temperature is increased.

This dependence of the exponent z with temperature
may explain why exponents larger than = 0.5 have not,
to our knowledge, been observed experimentally. We be-
lieve that this is due to the fact that experimental mea-
surements are always carried out at temperatures quite
close to the critical temperature. See, for example, Refs.
6, 7,9, and 12, where results correspond to temperatures
ranging around 7'/T. ~ 0.9. Experiments at lower tem-
peratures should then be performed in order to test our
results.

In relation to the existing theoretical approaches to
the domain growth problem, most of them have been
formulated assuming that the elementary dynamic ex-
citations are homogeneous and not correlated with the
local properties of the system. It might be that some
systems exhibit such a homogeneous relaxing behavior
after an initial regime, but others may not show it until
equilibrium is reached. For low enough temperature, the
vacancies in our model for a binary alloy do not behave in
such a homogeneous way, even at long times, so the usual
theories studying domain growth may not be applicable.
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