Incidence of tuberculosis among young children in rural Mozambique

Elisa López-Varela MD, MPH 1,2, Orvalho Joaquim Augusto MD 1, Kizito Gondo MD 1,
Alberto L. García-Basteiro MD MS 1,2, Oscar Fraile MD 1, 2, Tasmiya Ira BS 1, Jose Luis Ribó Aristizabal MD 3, Helder Bulo1, José Muñoz Gutierrez MD PhD 1,2, John Aponte MD PhD 1,2, Eusebio Macete MD PhD 1, Jahit Sacarlal MD PhD 1, Pedro L. Alonso MD PhD 1,2

(1) Manhiça Health Research Centre, Manhiça (CISM). CP 1929 Maputo, Mozambique
(2) Instituto de Salud Global de Barcelona, c/ Rosselló, 132, 5º 2ª (08036), Barcelona, Spain
(3) Radiology Department, Hospital Sant Joan de Déu Barcelona. Passeig Sant Joan de Déu, 2. 08950 Esplugues de Llobregat, Barcelona, Spain

Running title: Tuberculosis in Mozambique

Abbreviated title: Incidence of Childhood TB in Rural Mozambique

Corresponding author:

Elisa López-Varela, MD, MPH
Centro de Investigação em Saúde de Manhiça (CISM)
CP 1929 Maputo – Moçambique
Tel/Fax (+258) 21810002
Tel. (+258) 21810181 – Cel. (+258) 823168530
Email: elisa.lopez@cresib.cat

Sources of support: This work was supported by the European & Developing Countries Clinical Trials Partnership [IP_07_32080_003].

Keywords: tuberculosis; pediatrics; epidemiology; incidence; Mozambique
Background. Tuberculosis contributes significantly to child morbidity and mortality. This study aimed to estimate the minimum community based incidence rate of TB among children <3 years of age in Southern Mozambique.

Methods. Between October 2011 and October 2012, in the Manhiça District Health and Demographic Surveillance System (HDSS) we enrolled prospectively all presumptive TB cases younger than under 3 years through passive and active case finding. Participants included all children who were either symptomatic or were close contacts of a notified adult smear positive pulmonary TB. Children were clinically evaluated at baseline and follow-up visits. Investigation for TB disease included chest radiography, HIV and tuberculin skin testing as well as gastric aspirate and induced sputum sampling, which were processed for smear, culture, and mycobacterial molecular identification.

Results. During the study period, 13,764 children <3yr contributed to a total of 9,575 person years. Out of the 789 presumptive TB cases enrolled, 13 had TB culture confirmation and 32 were probable TB cases. The minimum community-based incidence rate of TB (confirmed plus probable cases) was 470/100,000 person-years (95% CI: 343 to 629/100,000). HIV co-infection was present in 44% of the TB cases.

Conclusion. These data highlight the huge burden of pediatric TB. This study provides one of the first prospective population-based incidence data of childhood tuberculosis and adds valuable information to the global effort of producing better estimates, a critical step to inform public health policy.
Introduction

Tuberculosis (TB) is an under-recognized but potentially important cause of morbidity and mortality in children in TB endemic settings\(^1,2\). Infants and young children (<3 years) and those with immunodeficiency caused by HIV or severe malnutrition are at highest risk of developing TB disease following infection\(^3\). Delay of diagnosis and treatment in these children increases the risk of rapid disease progression and mortality\(^4\). TB diagnosis is particularly challenging in this population, given the lack of specific symptoms, the difficulty in obtaining samples for microbiological examination, and the often pauci-bacillary disease. The diagnostic yield of samples is often <20\% under TB program conditions\(^5,6\). These diagnostic difficulties result in delayed and under-diagnosis of the disease, contributing to the hidden burden of TB in children.

Child TB is receiving more attention\(^3\) as the World Health Organization (WHO) post-2015 TB strategy seeks to engage the wider health sector including the child healthcare sector\(^7\). The WHO Global Tuberculosis Report 2014 estimates that 550 000 children developed tuberculosis during 2013, representing 6\% of the global TB burden\(^8\). However, several factors suggest that the true burden of disease may be higher as these estimates assume an equal ratio of notified cases in children and adults (whereas under-reporting in children is very common\(^9\)) and estimated deaths only include those in HIV negative children\(^3\). As a setting’s total TB burden increases, there tends to be a rise in the proportion of TB cases attributable to children\(^10\). Thus, in high TB burden settings, children may represent up to 10-20\% of TB cases, with increased TB incidence in <5 years (yr) and >15 yr\(^4,8,11\).
Mozambique is one of the high TB burden countries listed by the WHO but has a very low reported case-detection rate of 37%8. Improved reliable estimates are required to quantify the hidden burden of disease and measure future progress towards the control of TB in the country, especially for vulnerable populations such as children 8,12,13. We therefore aimed to determine the minimum community-based incidence rate (IR) of childhood TB.

Materials and Methods

Setting

The study was conducted in the Manhiça District (rural southern Mozambique), where the Manhiça Health Research Center (Centro de Investigação em Saúde de Manhiça, CISM) runs a Health and Demographic Surveillance System (HDSS) including the Manhiça District Hospital (MDH) and other peripheral health posts in the area. The HDSS links demographic and clinical data and covers a population of around 92,000 inhabitants, of which approximately 11% are <3yr 14. A full description of the site can be found elsewhere 14. In 2011, the <5yr mortality rate was 70/1000 live births. Severe malnutrition is common with an estimated IR of 35/1000 person-years among children from 1-2yr 15.

TB treatment is offered free of charge at the health units and children are routinely vaccinated at birth with Bacille Calmette-Guérin (BCG), with estimated coverage ranging from 86-90%16,17. The 2013 WHO TB incidence estimates for the country is 552/100.000 population8. The HIV prevalence in the district is among the highest in the
world, reaching 39.9% in the community among individuals aged 18-47 yr and 29.4% for women attending the antenatal clinic18.

Study Design and participants

A prospective study was designed to recruit participants through passive and active case finding in the community, MDH and peripheral health centers during a 1yr period (2011-2012). Participants included all children from the HDSS who were <3yr at the time of enrolment and had either TB symptoms or were close contacts of a notified adult smear positive pulmonary TB case (PTB). Relapse or recurrent cases were excluded.

Clinical Procedures

Presumptive TB cases were identified through two strategies: A) Passive case detection of children presenting to the health facility with ≥1 symptoms compatible with TB (see Table 1 for a complete list of symptoms). Those not recruited at the time of the visit to the clinic were later identified through the clinical data collected at the health unit by the HDSS. B) Active case finding consisted of linking the adult smear positive PTB cases registered at the district National TB Program (NTP) in the previous 24 months to the HDSS database in order to identify all household contacts <3yr. At enrolment, demographic and clinical information was collected through interviewing of parents and physical examination. Participants had a chest radiography (CXR) performed, followed by HIV antibody testing and tuberculin skin testing (TST). CXR were performed with a digital X-ray machine and included posteroanterior and lateral projections. For clinical purposes, an initial reading was performed on site by the
clinician. Subsequently, all CXR were reviewed and re-assessed by an experienced pediatric radiologist (JR) who was blinded to the clinical information. TST was performed with intradermal injection of 2 units (Serum Staten’s Institute, Denmark) and reading at 48-96h, according to the study protocol. For symptomatic cases, in the same day 2 ambulatory samples were obtained in a negative pressure facility available at the MDH: one gastric aspirate (GA) and one induced sputum (IS) with nasopharyngeal suction, following WHO recommendations19. Asymptomatic cases with abnormal CXR did not undergo sampling but were re-evaluated at further visits. For suspected extrapulmonary TB (EPTB) appropriate samples were obtained.

All case management was performed by the NTP according to established national clinical guidelines. Those patients with clinical or microbiological diagnosis of TB were started on TB treatment at the NTP with the standard 3 or 4 first-line regimens according to WHO category. Other symptomatic patients were referred for specific treatment and follow-up including antibiotics or nutritional supplementation if indicated. Presumptive cases had a follow-up visit within the next six months regardless of initial disease classification to assess resolution of symptoms without anti-TB treatment and /or clinical response to alternative therapy (if any). If persistently symptomatic, further evaluation and testing including CXR and samples was performed to rule out TB. Contacts had a follow-up visit which included physical examination and CXR, as well as GA and IS samples for those symptomatic or with an abnormal CXR.

Laboratory Procedures
Samples were transported within 4 hours of collection and processed in the Biosafety Level III TB laboratory at CISM. Following NaCl/NaOH digestion and concentration through centrifugation, all samples were processed for acid fast bacilli smear testing using LED Microscopy and Zielh Nielsen staining and inoculated into liquid culture media (BACTEC MGIT 960® -automated) and solid media (Lowenstein Jensen). Positive cultures were confirmed using Zielh Nielsen staining and rapid test as well as Xpert MTB/RIF and identified through mycobacterial molecular identification (HAIN GenoType® Mycobacterium CM/AS). First line drug sensitivity testing was performed either on liquid culture or line probe assays. The laboratory is subject to an external quality assurance program.

BOX: Study definitions

- Exposure to TB was defined as either documented (identified through active case finding) or reported contact (household or regular contact during child lifetime).
- Positive TST was defined as an induration >5mm for HIV or malnourished children and >10mm for the rest of participants.
- HIV infection was defined as: positive antibody test in children>18 months (Determine, Abbott Laboratories and confirmed with Unigold, Trinity Biotech); or positive HIV PCR in those <18 months; or a strong clinical suspicion with positive antibody test in the absence of a PCR result.
- CXR were classified as compatible if presented ≥1 of the following radiographic abnormalities: airway compression, lymphadenopathy, opacification, nodular picture, effusion, cavities, spondylitis or Ghon focus\(^{20}\).
Presumptive TB cases included all children <3 with compatible TB sign or symptoms.

Confirmed TB cases included those with compatible symptoms plus a positive culture with Mycobacterium *Tuberculosis*. Probable TB cases were defined as those with: (1) compatible symptoms unresolved at last clinical follow up visit (prior to any TB treatment initiation) plus (2) compatible CXR (for children with ≥1CXR, the latter was used given the likelihood of seeing resolving pneumonias) plus (3) at least one of the following: TB exposure, positive TST or positive response to TB treatment. EPTB cases followed the same definition except for the requirement of having an abnormal CXR. The study TB case definition was adapted a standardized clinical case definition of intrathoracic TB disease and included confirmed plus probable cases²¹ (See Figure 2 for complete case definition).

Ethical approval

The study protocol was approved by the Mozambican National Bioethics Committee and the Hospital Clinic of Barcelona Ethics Review Committee.

Data Analysis and Statistical Considerations

Clinical data was double entered in an electronic data capture system (OpenClinica™ www.openclinica.org) and checked for discrepancies. Statistical software for analysis was Stata 13.0 (StataCorp. 2013. Stata: Release 13. Statistical Software. College Station, TX: StataCorp LP). We calculated z-scores for weight-for-age, height-for-age and weight-for-height using World Health Organization 2006 reference data²².
The minimum community-based IR was calculated as a density rate with the age-specific yearly number of TB cases (according to the study case definition) among study participants divided by the total age-specific population at risk during a period of 12 months (person-time at risk). Time at risk was individually measured using DSS data taking into account demographic events (births, deaths, migrations) of all children included in the study. The IR is considered to be minimum as the case detection system cannot ensure that all TB cases are detected. For each IR 95% exact Poisson confidence interval were calculated. Proportions were compared using the Pearson or Fisher exact Chi-square test and odds ratio (OR) and 95% confidence intervals (CI) were estimated using logistic regression. Variables at a significance level below 0.2 were chosen and placed on stepwise backward multivariate logistic regression. Only factors with a p-value on likelihood ratio tested were retained on the model.

Results

During the study period, 13,764 children <3yr contributed to a total of 9.575py in the Manhiça DSS (Figure 1). A total of 789 presumptive TB cases were enrolled (42 and 747 identified through active and passive case finding respectively). Forty-five children fulfilled the TB case definition -13 microbiologically confirmed plus 32 probable TB (Figure 2). Thus, the minimum community-based IR was 470/100,000person-year (95%CI 343/100,000 to 629/100,000) for confirmed plus probable cases and 135/100,000person year for confirmed cases (95%CI 72 to 232/100,000)(Table 2).

Baseline characteristics of presumptive TB cases are presented in Table 1. Fifty-four percent were males, and the age distribution showed a predominance of children.
between the ages 12 to 24 months (51%). The most frequent clinical feature at
enrolment was severe malnutrition, which was the only symptom in 72% of cases.

Nutritional assessment found that almost a quarter had severe undernutrition (weight
for age Z score <3). Of the 1347 total CXR performed during the study, 27% had only
one projection. Twenty-one percent of all presumptive TB cases had a CXR compatible
with TB. Thirty percent of presumptive cases had a second TST of which, 9% had a
positive TST. Among all presumptive TB cases, nine had a positive smear, although
none of the 9 had a positive MTBC culture (4 were NTM and 5 were culture negative).
Non-TB mycobacteria (NTM) were isolated in 27% of all cultures of presumptive cases.
We found 7 EPTB cases - 4 lymph node and 3 disseminated- and no TB meningeal
cases. A total of 104 children were diagnosed as HIV positive (13%).

We identified 13 confirmed TB cases (7 in GA, 4 in IS and 2 both in GA and IS). The %
of confirmed cases among TB cases was highest for those <1y (40% vs 29 and 22%
among children with 1-2yr and 2-3yr respectively), and statistically significantly lower
for HIV-TB co-infected cases (10 vs 44%, p=0.02). Confirmed cases presented a higher
frequency of cough or fever as compared to probable cases. Furthermore, the
confirmed cases appeared to be more symptomatic at enrolment than did the
probable cases (53.8% vs 15.6% presenting with ≥1 TB symptom respectively,
p<0.001). Probable cases had a higher proportion of HIV-infection (p=0.01), positive
TST (p=0.001) or BCG scarring (p=0.08) as compared to confirmed cases.

Multivariate logistic regression analysis for TB risk factors showed that HIV infection,
and number of previous outpatient consultations were predictors of TB disease when
compared to unlikely TB cases. After adjusting for other variables, HIV infected children were six times more likely to have TB disease than uninfected ones (OR 8.4, 95% CI 4 to 17) (Table 3, available online).

Fifty-two patients were started on TB treatment based on clinical or microbiological criteria, 67% fulfilled the study TB case definition (Table 4). A total of 97 children initiated isoniazide preventive treatment (IPT) (71 based on exposure history, 21 on TST results and 5 unspecified) and 5 were later diagnosed as TB cases while on IPT. Due to drug supply shortages, isoniazide was not always available and 47% of children with criteria did not initiate IPT. The mortality rate for all presumptive cases at 12 months after enrolment was 5.2% and increased with decreasing age (10.9, 5.7 and 0.8% of children in the first, second and third year of life respectively, p<0.001). Mortality was also higher in TB cases as compared to non-TB (13% vs 5% respectively, p=0.02) as it was in HIV infected children as compared to HIV-uninfected (14.4% vs 3.8%, p<0.001). The case fatality rate was 9% (N=4/45 TB cases), all deaths taking place in the first 6 months after enrollment.

Discussion

This study provides one of the first prospective population-based incidence estimates of childhood tuberculosis in a high TB-HIV endemic setting and shows a consistently high IR across all ages. These results underscore the hypothesis of a gross under-detection and under-reporting of childhood TB in Mozambique and globally.23
Mozambique has almost half its population below the age of <15yr, and yet, pediatric TB only accounted for 7% of all new cases notified in 2012, much lower than the expected 10-20% of the total burden of TB disease seen in high burden countries. In the Manhiça District, the notified IR for children <1yr and between 1-4 yr in 2011 was 163 and 399/100.000 respectively (personal communication24). This corresponds to half the TB IR reported in this study and may suggest under-detection and under-diagnosing. Furthermore, under-detection is common in the wider Mozambican context, where WHO estimates that only 37% of actual TB cases are detected8. While the latest WHO country incidence estimates are 552 per 100.000 population, data from Manhiça suggest that the burden of disease in Southern Mozambique might be much higher. In fact, while the national 2011 notified rate was 186/100.000 population, same-year data from the Manhiça suggest the TB incidence rate of smear positive cases could be as high as 456 per 100,000 population among adults aged 18 to 47 yr25.

Globally, several pediatric TB incidence estimates have been published recently, with results varying from less than 200 000 new cases in 201326 to 970 000 in 20106. The large variation in the estimates highlights the challenges in estimating the burden of pediatric TB and the need for population-based data to inform predictive models.

There are few studies reporting age-specific pediatric TB incidence in high burden countries. Most studies are based on hospital-based retrospective reviews of notification rates and, to our knowledge, none have reported community IR using DSS11,27–35. However, in areas where health seeking behavior strongly modifies the pattern
of attendance, community based studies that use active case detection rather than notified TB rates are necessary to provide accurate estimates. Moreover, childhood mortality and frequent migration are potential causes of disease underestimation if DSS person-years are not available. Inconsistency in TB clinical definitions among studies are a challenge for comparability and have been a limitation in obtaining data for meta-analyses. The recently proposed definition, applied in this study, may pave the road for future comparisons. The IR we report is significantly higher than in other high burden African countries such as Malawi (notified IR<1y of 78/100.000) or Tanzania (theoretical IR<5y based on likelihood of disease progression of 134.5 to 308.5/100.000) and similar to data from Gabon (extrapolated IR<15y 366/100.000), or neighboring South Africa (notified IR<5y 770/100.000).

There are several limitations to this study, mostly leading to a possible underestimation of the true TB incidence. First, only single-day samples were obtained as most patients would not accept overnight admission, decreasing the chances of microbiological confirmation. Second, for study purposes CXR were read by a single blinded experienced pediatric radiologist rather than the two independent CXR readers are often recommended to prevent bias, given the pivotal role of CXR in case definition, and the poor inter and intra-observer agreement among reviewers. Third, contact tracing could not be fully implemented mainly due to difficulties in patient identification and poor recording. Fourth, the % of EPTB cases was lower than the 20-30% expected and reported by others. While BCG protection may have a role, it is likely that some EPTB cases in this study were missed; the reason may be due to a stronger focus on pulmonary TB in the study design, errors in classification.
(disease localization, including disseminated TB, may be confounding in young children in the absence of CT-scan), or lost cases due to the fact that severely ill children are often transferred to the tertiary reference hospital in the capital for specific diagnostic procedures. Finally, there is a risk of overestimating TB IR by either including TB prevalent cases at enrollment or adding new incident cases during follow-up beyond the one year enrollment period. Although this possibility can’t be ruled out, we believe the effect would be minimal and probably outweighed by the above-mentioned risk of underestimation.

In this study, HIV prevalence was high regardless of disease classification, reaching 56% of probable cases. The fact that significantly fewer HIV infected children had TB confirmation reflects the diagnostic difficulties in this group. Given the overlap between symptoms from both TB and HIV, HIV infected cases of TB pose the greatest ascertainment bias with the highest risk of over or under estimation. Even though IPT is indicated in all HIV positive children, the implementation of IPT among African NTP remains very poor40, and in this study, the high proportion of missed opportunities for chemoprophylaxis in HIV and or TB exposed should raise alert. There may also be missed preventable child deaths in HIV-infected presumptive TB cases and possible TB cases. It has been reported that many children who die of diseases such as malnutrition or respiratory infections may have in fact, undiagnosed TB41. There is thus a need for widespread recognition that TB control is crucial for childhood survival 1.
This study highlights the huge burden of pediatric TB under detection in children under 3. These data add valuable information to the global effort of producing better estimates of childhood TB burden, a critical step to inform public health policy.

Acknowledgement

We thank the participants and their families. We are grateful to the National TB Program for, health staff at the Manhiça District Hospital and peripheral health centers for their contribution. We thank Dr Bassat and Dr Naniche (Barcelona Centre for International Health Research) for reviewing the paper.

Table 1. Baseline characteristics of presumptive TB cases (n=789), N (%)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (male)</td>
<td>430 (54.5)</td>
</tr>
<tr>
<td>Age in months (Median [IQR])</td>
<td>19.8 (13.8-25.9)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
</tr>
<tr>
<td>< 1 yr</td>
<td>146 (18.5)</td>
</tr>
<tr>
<td>1-2 yr</td>
<td>403 (51.1)</td>
</tr>
<tr>
<td>>2 yr</td>
<td>240 (30.4)</td>
</tr>
<tr>
<td>BCG scar (n=785)</td>
<td>686 (87.4)</td>
</tr>
<tr>
<td>> 1 hospitalization in previous year</td>
<td>206 (26.1)</td>
</tr>
<tr>
<td>≥ 10 consultations in previous year</td>
<td>131 (16.6)</td>
</tr>
<tr>
<td>TB contact (documented or reported)</td>
<td>87 (11)</td>
</tr>
<tr>
<td>**Symptoms ** *</td>
<td></td>
</tr>
<tr>
<td>Cough ≥2 weeks</td>
<td>156 (19.8)</td>
</tr>
<tr>
<td>Fever≥2 weeks</td>
<td>50 (6.3)</td>
</tr>
<tr>
<td>Malnutrition (chronic or acute)</td>
<td>668 (84.7)</td>
</tr>
<tr>
<td>Wheeze or lower respiratory infection</td>
<td>43 (5.5)</td>
</tr>
<tr>
<td>Adenopathy</td>
<td>3 (0.4)</td>
</tr>
<tr>
<td>Number of presenting symptoms</td>
<td></td>
</tr>
<tr>
<td>One symptom</td>
<td>608 (77.1)</td>
</tr>
<tr>
<td>Only malnutrition</td>
<td>565 (71.6)</td>
</tr>
<tr>
<td>Hospitalized at time of enrolment</td>
<td>101 (12.8)</td>
</tr>
<tr>
<td>Physical examination</td>
<td></td>
</tr>
<tr>
<td>Stunting (n=775) †</td>
<td>404 (52.1)</td>
</tr>
<tr>
<td>Undernutrition (n=777) ‡</td>
<td>184 (23.7)</td>
</tr>
<tr>
<td>Wasting (n=775) ¥</td>
<td>92 (11.9)</td>
</tr>
<tr>
<td>Kwashiorkor (n= 780)</td>
<td>33 (4.2)</td>
</tr>
<tr>
<td>Febrile (N=780)</td>
<td>44 (5.6)</td>
</tr>
<tr>
<td>Crackles on chest examination</td>
<td>27 (3.4)</td>
</tr>
<tr>
<td>TST positive (n=787)</td>
<td>74 (9.4)</td>
</tr>
<tr>
<td>HIV positive</td>
<td>104 (13.2)</td>
</tr>
<tr>
<td>Radiological changes suggestive of TB (n= 766)</td>
<td>160 (20.9)</td>
</tr>
</tbody>
</table>

Footnote:
Abbreviations: IQR, interquartile range; BCG, Bacille Calmette Guerin; HIV, human immunodeficiency virus; TST, tuberculin skin test
* Compatible TB symptoms: cough for ≥ 14 days not responding to appropriate course of antibiotics; fever greater than 38°C ≥ 14 days. after common causes like malaria or pneumonia were excluded; malnutrition defined as under 60% weight for height, failure to gain weight for more than 2 months or any loss of weight and not responded to nutritional interventional; unexplained wheeze ≥ 14 days not responding to standard treatments; lower respiratory tract infection ≥ 14 days not responding to antibiotics after 72hours; TB exposure in the last 12 months; symptoms compatible with extrapulmonary TB (EPTB) such as painless enlarged lymph nodes with or without fistula formation ≥ 14 days, arthritis, gibbus, meningitis, effusion, or unexplained hematuria, dysuria or polaquiuiria for ≥21 days.
† Stunting: Height for age Z score <2.
‡ Undernutrition: Weight for age Z score < 2.
¥ Wasting: Weight for height <2.
Table 2: Community based incidence rate of confirmed and probable tuberculosis cases by age group

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>PY</th>
<th>Incidence Rate per 100000py</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>All tuberculosis cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmed</td>
<td>13</td>
<td>9575.6</td>
<td>135.8</td>
<td>72.3 - 232.2</td>
</tr>
<tr>
<td>Probable</td>
<td>32</td>
<td>9575.6</td>
<td>334.2</td>
<td>228.6 - 471.8</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>9575.6</td>
<td>470.0</td>
<td>342.8 - 628.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Confirmed cases by age group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>< 1</td>
</tr>
<tr>
<td>1-2</td>
</tr>
<tr>
<td>2+</td>
</tr>
<tr>
<td>All Confirmed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probable cases by age group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>< 1</td>
</tr>
<tr>
<td>1-2</td>
</tr>
<tr>
<td>2+</td>
</tr>
<tr>
<td>All Probable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All cases by age group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
</tr>
<tr>
<td>< 1</td>
</tr>
<tr>
<td>1-2</td>
</tr>
<tr>
<td>2+</td>
</tr>
<tr>
<td>All TB Cases</td>
</tr>
</tbody>
</table>

Footnote:
Abbreviations: PY, person years
Table 3. TB risk factor analysis

<table>
<thead>
<tr>
<th></th>
<th>TB Unlikely (N=603)</th>
<th>TB Case (N=45)</th>
<th>Univariate OR (95% CI)</th>
<th>p</th>
<th>Adjusted OR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>322</td>
<td>20</td>
<td>44.4%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>281</td>
<td>25</td>
<td>55.6%</td>
<td>1.43 (0.78-2.64)</td>
<td>0.246</td>
<td>1.52 (0.79-2.92)</td>
</tr>
<tr>
<td>Age in months (Median [IQR])</td>
<td>19.8 (14.1 - 26.0)</td>
<td>19.5 (13.8 - 26.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age category, N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1</td>
<td>100</td>
<td>10</td>
<td>22.2%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>318</td>
<td>17</td>
<td>37.8%</td>
<td>0.53 (0.24 - 1.21)</td>
<td>0.133</td>
<td>0.51 (0.21-1.23)</td>
</tr>
<tr>
<td>2+</td>
<td>185</td>
<td>18</td>
<td>40.0%</td>
<td>0.95 (0.43 - 2.19)</td>
<td>0.153</td>
<td>0.94 (0.39-2.26)</td>
</tr>
<tr>
<td>BCG Scar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>74</td>
<td>7</td>
<td>15.6%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>527</td>
<td>37</td>
<td>82.2%</td>
<td>0.74 (0.32 - 1.73)</td>
<td>0.488</td>
<td></td>
</tr>
<tr>
<td>TB contact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>557</td>
<td>32</td>
<td>71.1%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>46</td>
<td>13</td>
<td>28.9%</td>
<td>4.92 (2.38 - 10.15)</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td>Nº consultations in previous year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>5 (3 - 8)</td>
<td>7 (2 - 11)</td>
<td>-</td>
<td>0.074</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 10</td>
<td>505</td>
<td>29</td>
<td>64.4%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 - +</td>
<td>98</td>
<td>16</td>
<td>35.6%</td>
<td>2.84 (1.48 - 5.47)</td>
<td>0.001</td>
<td>2.72 (1.35-5.49)</td>
</tr>
<tr>
<td>Nº of hospitalizations in previous year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>446</td>
<td>26</td>
<td>57.8%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least one</td>
<td>157</td>
<td>19</td>
<td>42.2%</td>
<td>2.08 (1.11 - 3.87)</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>Symptoms at enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cough ≥2 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>489</td>
<td>36</td>
<td>80.0%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>114</td>
<td>9</td>
<td>20.0%</td>
<td>1.07 (0.50 - 2.29)</td>
<td>0.857</td>
<td></td>
</tr>
<tr>
<td>Fever ≥2 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>567</td>
<td>40</td>
<td>88.9%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>36</td>
<td>5</td>
<td>11.1%</td>
<td>1.97 (0.73 - 5.30)</td>
<td>0.172</td>
<td></td>
</tr>
<tr>
<td>Chronic or Acute Malnutrition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>82</td>
<td>12</td>
<td>26.7%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>521</td>
<td>33</td>
<td>73.3%</td>
<td>0.43 (0.21 - 0.88)</td>
<td>0.016</td>
<td>0.42 (0.19-0.89)</td>
</tr>
<tr>
<td>Physical Exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stunting †</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>281</td>
<td>16</td>
<td>35.6%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>312</td>
<td>28</td>
<td>62.2%</td>
<td>1.58 (0.83 - 2.98)</td>
<td>0.158</td>
<td></td>
</tr>
<tr>
<td>Undernutrition ‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>460</td>
<td>30</td>
<td>66.7%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>134</td>
<td>14</td>
<td>31.1%</td>
<td>1.60 (0.82 - 3.11)</td>
<td>0.161</td>
<td></td>
</tr>
<tr>
<td>Wasting ¥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>531</td>
<td>37</td>
<td>82.2%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>62</td>
<td>7</td>
<td>15.6%</td>
<td>1.62 (0.69 - 3.80)</td>
<td>0.262</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crackles on chest examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>584</td>
<td>97,0%</td>
<td>39</td>
<td>90,7%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>18</td>
<td>3,0%</td>
<td>4</td>
<td>9,3%</td>
<td>3.32 (1.07 - 10.36)</td>
<td>0.052*</td>
</tr>
</tbody>
</table>

Tuberculin skin test

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
<td>0,0%</td>
<td>23</td>
<td>51,1%</td>
<td>-</td>
</tr>
<tr>
<td>yes</td>
<td>603</td>
<td>100,0%</td>
<td>21</td>
<td>46,7%</td>
<td>< 0.001μ</td>
</tr>
</tbody>
</table>

HIV Reported

<table>
<thead>
<tr>
<th></th>
<th>Not positive</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>549</td>
<td>91,0%</td>
<td>25</td>
<td>55,6%</td>
<td>-</td>
</tr>
<tr>
<td>yes</td>
<td>54</td>
<td>9,0%</td>
<td>20</td>
<td>44,4%</td>
<td>8.13 (4.12 - 16.04)</td>
</tr>
</tbody>
</table>

Footnote:
Abbreviations: IQR, interquartile range; BCG, Bacille Calmette Guerin; HIV, human immunodeficiency virus; TST, tuberculin skin test
† Stunting: Height for age Z score <2.
‡ Undernutrition: Weight for age Z score < 2.
¥ Wasting: Weight for height <2
μ This variable was not included in multivariate analysis as a positive TST is part of the TB definition
* Exact Chi-squared test
Table 4. Outcome by group classification, N (%)

<table>
<thead>
<tr>
<th></th>
<th>Presumptive (N=789)</th>
<th>Definite (N=13)</th>
<th>Probable (N=32)</th>
<th>Possible (N=96)</th>
<th>Unlikely (N=603)</th>
<th>MTB infection (N=45)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (male)</td>
<td>430 (54.5%)</td>
<td>5 (38.5%)</td>
<td>15 (46.9%)</td>
<td>57 (59.4%)</td>
<td>322 (53.4%)</td>
<td>31 (68.9%)</td>
</tr>
<tr>
<td>HIV positive</td>
<td>104 (13.2%)</td>
<td>2 (15.4%)</td>
<td>18 (56.3%)</td>
<td>24 (25%)</td>
<td>54 (9%)</td>
<td>6 (13.3%)</td>
</tr>
<tr>
<td>IPT</td>
<td>64 (8.1%)</td>
<td>1 (7.7%)</td>
<td>4 (12.5%)</td>
<td>4 (4.2%)</td>
<td>24 (4%)</td>
<td>31 (68.9%)</td>
</tr>
<tr>
<td>TB treatment</td>
<td>52 (6.6%)</td>
<td>9 (69.2%)</td>
<td>26 (81.3%)</td>
<td>14 (14.6%)</td>
<td>1 (0.2%)</td>
<td>2 (4.4%)</td>
</tr>
<tr>
<td>Median time to diagnosis</td>
<td>115 (35-224)</td>
<td>41 (35-115)</td>
<td>184 (55-224)</td>
<td>60 (35-235)</td>
<td>14 (14 - 14)</td>
<td>148 (89 - 207)</td>
</tr>
<tr>
<td>(days) N (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality at 12 months</td>
<td>41 (5.2)</td>
<td>3 (23.1%)</td>
<td>1 (3.1%)</td>
<td>13 (13.5%)</td>
<td>23 (3.8%)</td>
<td>1 (2.2%)</td>
</tr>
</tbody>
</table>

Footnote:
Abbreviations: HIV, human immunodeficiency virus; IPT, isoniazide preventive treatment; IQR, interquartile range; TST, tuberculin skin test
Figure 1. Study Profile

Children under 3 years in Manhiça DSS during the study period (October 2011-October 2012)
N= 13764
9575.6 Person–years

ACTIVE CASE FINDING
DSS children <3y contacts of adult smear positive PTB
N = 180

Enrolled contacts
N = 102

Presumptive TB
YES
N = 39

NO
N = 56

Follow-up
N = 58

Presumptive TB

Follow-up
YES
N=3

≥1 Follow up visit
N = 697

PASIVE CASE FINDING
Identified children with compatible TB symptoms
N= 1483

Enrolled presumptive TB cases further work-up examination
N=789

≥1 Follow up visit
N = 697

437 - Not eligible
26 - Died
110 - Migrations
121 - Refused to consent

NOTIFIED smear positive PTB adults belonging to DSS
N = 123

4- Refused to consent
7 - Died
7 - Migrations
60 – Not identified

Lost to follow-up
N = 7

Enrolled contacts
N = 102

YES

Integral
NO
N = 56

Refused follow-up
7 - Other

YES

Follow-up
N = 58

Presumptive TB

YES

≥1 Follow up visit
N = 697

24 - Died
31 - Migrations
27 - Refused follow-up
9 - Other

16 - Died
29 - Migrations
13 - Refused follow-up
7 - Other
Figure 2. Algorithm for study case classification adapted from Graham et al (JID, 2012).

1. Recruited
 [789]

2. Microbiological Confirmation?
 Yes [716]
 → CONFIRMED TB
 [13]
 No [776]

3. PERSISTENT SYMPTOMS: Last visit (prior to TB Treatment initiation if applicable) with symptoms?
 Yes [208]

4. ABNOMAL X Ray: Last XR TB compatible? (prior to TB treatment initiation if applicable)
 No (or not available) [143]

5. No documented exposure
 OR
 Immunologic evidence of infection with M. tuberculosis
 OR
 Response to treatment (for those who initiated TB treatment and when evaluation possible)
 [63]

6. Documented exposure
 OR
 Immunologic evidence of infection with M. tuberculosis
 OR
 Response to treatment (for those who initiated TB treatment and when evaluation possible)
 [18]

7. MTB INFECTION
 [45]

8. TB UNLIKELY
 [603]

9. No documented exposure
 AND
 No immunologic evidence of infection with M. tuberculosis
 AND
 No response to treatment (OR response to evaluated)
 [80]

10. Resolution of symptoms without antiTB therapy
 AND
 Immunologic evidence of infection with M. tuberculosis
 [45]

11. RESOLUTION OF SYMPTOMS WITHOUT ANTI TB THERAPY
 AND
 IMMUNOLOGIC EVIDENCE OF INFECTION WITH M. TUBERCULOSIS
 [38]

12. MTB INFECTION
 [45]

13. TB UNLIKELY
 [603]

14. NO IMMUNOLOGIC EVIDENCE OF INFECTION WITH M. TUBERCULOSIS
 AND
 RESPONSE TO TREATMENT (OR RESPONSE TO EVALUATED)
 [523]

15. Resolution of symptoms without antiTB therapy
 AND
 Immunologic evidence of infection with M. tuberculosis
 [45]

16. NO IMMUNOLOGIC EVIDENCE OF INFECTION WITH M. TUBERCULOSIS
 AND
 NO RESPONSE TO TREATMENT (OR RESPONSE TO EVALUATED)
 [523]

17. Resolution of symptoms without antiTB therapy
 AND
 Immunologic evidence of infection with M. tuberculosis
 [45]

18. NO IMMUNOLOGIC EVIDENCE OF INFECTION WITH M. TUBERCULOSIS
 AND
 NO RESPONSE TO TREATMENT (OR RESPONSE TO EVALUATED)
 [523]

19. YES: Consistent with TB [65]

20. Documented exposure
 OR
 Immunologic evidence of infection with M. tuberculosis
 OR
 Response to treatment (for those who initiated TB treatment and when evaluation possible)
 [63]

21. No documented exposure
 AND
 No immunologic evidence of infection with M. tuberculosis
 AND
 No response to treatment (OR response to evaluated)
 [63]

22. Documented exposure
 OR
 Immunologic evidence of infection with M. tuberculosis
 OR
 Response to treatment (for those who initiated TB treatment and when evaluation possible)
 [35]

23. PROBABLE TB
 [30]

24. + 2 PROBABLE EPTB
 ALL PROBABLE TB
 [32]
Figure 1. Study Profile

Flowchart showing the number of children under three in the study area and those enrolled in the study. A total of 1483 children were identified with at least one compatible TB symptom and 747 presumptive TB cases were enrolled in the study for further work-up. Among the 329 adult smear positive cases registered at the NTP between October 2010-October 2012, we identified 123 belonging to the study area and 180 contacts <3y, of whom 102 accepted to participate in the study yielding an additional 42 presumptive TB cases. Among the remaining 60 contacts, 7 were lost to follow-up and the rest had at least one follow up visit. Eighty-eight percent presumptive TB cases enrolled had at least one follow-up visit and 632/697 completed follow-up (had follow-up visits until alternative diagnosis was made or became asymptomatic). Abbreviations: DSS, Demographic Surveillance System; PTB, pulmonary tuberculosis.

Figure 2. Algorithm for study case classification adapted from Graham et al (JID, 2012)

Definitions. Confirmed TB: Compatible symptoms plus a positive culture with MTBC Persistent symptoms: Compatible symptoms unresolved at last clinical follow up visit (prior to any TB treatment initiation). Consistent CXR: CXR read by blinded experienced pediatric radiologist with one or more radiographic abnormalities (airway compression, lymphadenopathy, opacification, nodular picture, effusion, cavities, spondylitis or Ghon focus). For children with more than one CXR, the latter was used given the likelihood of seeing resolving pneumonias. Positive response to TB treatment: determined by the clinician at first possible follow-up visit and defined as total/partial resolution of clinical features suggestive of TB present at baseline with no new clinical features suggestive of TB for those patients adherent to TB treatment. Resolution of symptoms without anti-TB treatment was evaluated by the clinical at first follow-up visit as total/partial resolution of
clinical symptoms suggestive of TB present at baseline and no new clinical features suggestive of TB in the absence of TB treatment.

Description: Of the initial 789 presumptive TB cases, 568 had symptoms resolved at follow-up visits, leaving 208 presumptive cases with persistent TB symptoms, of which 65 had an abnormal CXR at last visit. Probable cases include 30 children who fulfilled the definition plus an additional 2 extrapulmonary-cases. Contacts not enrolled as presumptive TB cases are not included in the algorithm.