Please use this identifier to cite or link to this item:
Title: Quantum simulation of conductivity plateaux and fractional quantum Hall effect using ultracold atoms
Author: Barberán Falcón, Núria
Dagnino, D.
Garcia-March, M. A.
Trombettoni, Andrea
Taron i Roca, Josep
Lewenstein, M.
Keywords: Càlcul fraccional
Efecte Hall quàntic
Transport biològic
Fractional calculus
Quantum Hall effect
Biological transport
Issue Date: 16-Dec-2015
Publisher: Institute of Physics Pub.
Abstract: We analyze the role of impurities in the fractional quantum Hall effect using a highly controllable system of ultracold atoms. We investigate the mechanism responsible for the formation of plateaux in the resistivity/conductivity as a function of the applied magnetic field in the lowest Landau level regime. To this aim, we consider an impurity immersed in a small cloud of an ultracold quantum Bose gas subjected to an artificial magnetic field. We consider scenarios corresponding to experimentally realistic systems with gauge fields induced by rotation of the trapping parabolic potential. Systems of this kind are adequate to simulate quantum Hall effects in ultracold atom setups. We use exact diagonalization for few atoms and to emulate transport equations, we analyze the time evolution of the system under a periodic perturbation. We provide a theoretical proposal to detect the up-to-now elusive presence of strongly correlated states related to fractional filling factors in the context of ultracold atoms. We analyze the conditions under which these strongly correlated states are associated with the presence of the resistivity/conductivity plateaux. Our main result is the presence of a plateau in a region, where the transfer between localized and non-localized particles takes place, as a necessary condition to maintain a constant value of the resistivity/conductivity as the magnetic field increases.
Note: Reproducció del document publicat a:
It is part of: New Journal of Physics, 2015, vol. 17, p. 125009
Related resource:
ISSN: 1367-2630
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
655903.pdf499.38 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.