Please use this identifier to cite or link to this item:
Title: Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids
Author: Pazos-Pérez, Nicolas
Pazos, Elena
Catala, Carme
Mir-Simon, Bernat
Gómez-de Pedro, Sara
Sagales, Juan
Villanueva, Carlos
Vila Estapé, Jordi
Soriano Viladomiu, Alex
García de Abajo, F. Javier
Álvarez-Puebla, Ramón A.
Keywords: Malalties bacterianes
Bacterial diseases
Issue Date: 1-Jul-2016
Publisher: Springer Nature
Abstract: Efficient treatments in bacterial infections require the fast and accurate recognition of pathogens, with concentrations as low as one per milliliter in the case of septicemia. Detecting and quantifying bacteria in such low concentrations is challenging and typically demands cultures of large samples of blood (~1 milliliter) extending over 24-72 hours. This delay seriously compromises the health of patients. Here we demonstrate a fast microorganism optical detection system for the exhaustive identification and quantification of pathogens in volumes of biofluids with clinical relevance (~1 milliliter) in minutes. We drive each type of bacteria to accumulate antibody functionalized SERS-labelled silver nanoparticles. Particle aggregation on the bacteria membranes renders dense arrays of inter-particle gaps in which the Raman signal is exponentially amplified by several orders of magnitude relative to the dispersed particles. This enables a multiplex identification of the microorganisms through the molecule-specific spectral fingerprints.
Note: Reproducció del document publicat a:
It is part of: Scientific Reports, 2016, vol. 6, num. , p. 29014
Related resource:
ISSN: 2045-2322
Appears in Collections:Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
Articles publicats en revistes (Medicina)
Articles publicats en revistes (ISGlobal)
Articles publicats en revistes (Fonaments Clínics)

Files in This Item:
File Description SizeFormat 
pazos-perez2016_2201.pdf1.14 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons