Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/101708
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeller Amado, Sara-
dc.contributor.authorTahirbegi, Islam Bogachan-
dc.contributor.authorMir Llorente, Mònica-
dc.contributor.authorSamitier i Martí, Josep-
dc.contributor.authorSoriano i Fradera, Jordi-
dc.date.accessioned2016-09-09T16:06:04Z-
dc.date.available2016-09-09T16:06:04Z-
dc.date.issued2015-11-26-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/2445/101708-
dc.description.abstractThe understanding of the key mechanisms behind human brain deterioration in Alzheimer' disease (AD) is a highly active field of research. The most widespread hypothesis considers a cascade of events initiated by amyloid-β peptide fibrils that ultimately lead to the formation of the lethal amyloid plaques. Recent studies have shown that other agents, in particular magnetite, can also play a pivotal role. To shed light on the action of magnetite and amyloid-β in the deterioration of neuronal circuits, we investigated their capacity to alter spontaneous activity patterns in cultured neuronal networks. Using a versatile experimental platform that allows the parallel monitoring of several cultures, the activity in controls was compared with the one in cultures dosed with magnetite, amyloid-β and magnetite-amyloid-β complex. A prominent degradation in spontaneous activity was observed solely when amyloid-β and magnetite acted together. Our work suggests that magnetite nanoparticles have a more prominent role in AD than previously thought, and may bring new insights in the understanding of the damaging action of magnetite-amyloid-β complex. Our experimental system also offers new interesting perspectives to explore key biochemical players in neurological disorders through a controlled, model system manner.-
dc.format.extent16 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1038/srep17261-
dc.relation.ispartofScientific Reports, 2015, vol. 5, num. 17261-
dc.relation.urihttp://dx.doi.org/10.1038/srep17261-
dc.rightscc-by-nc-nd (c) Teller, Sara et al., 2015-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationMalaltia d'Alzheimer-
dc.subject.classificationMagnetita-
dc.subject.classificationAmiloïdosi-
dc.subject.otherAlzheimer's disease-
dc.subject.otherMagnetite-
dc.subject.otherAmyloidosis-
dc.titleMagnetite-Amyloid-β deteriorates activity and functional organization in an in vitro model for Alzheimer's disease-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec655565-
dc.date.updated2016-09-09T16:06:10Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid26608215-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
655565.pdf2.23 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons