Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/102249
Title: A few things about hyperimaginaries and stable forking
Author: Potier, Joris
Director: Casanovas Ruiz-Fornells, Enrique
Keywords: Lògica
Topologia
Categories (Matemàtica)
Teoria de models
Teoria de conjunts
Logic
Topology
Categories (Mathematics)
Model theory
Set theory
Issue Date: 8-Jun-2015
Publisher: Universitat de Barcelona
Abstract: [eng] The core of this PhD dissertation is basically twofold : On one hand, I get some new results on the relationship between compact groups and bounded hyperimaginaries, extending a little bit the classical results of Lascar and Pillay in Hyperimaginaries And Automorphism Groups. On the other hand, I prove some new results around the so called "stable forking" property, more specifically that a simple theory T has stable forking if Teq has. Quite surprisingly, the proof is not so straigtforward.
[spa] En este texto se trata, por una parte, de la relación entre grupos compactos e hiper-imaginarios acotados, y por otra parte se prueba que una teoría T tiene la propiedad de bifurcación estable si i solo si Teq la tiene.
URI: http://hdl.handle.net/2445/102249
Appears in Collections:Tesis Doctorals - Departament - Lògica, Història i Filosofia de la Ciència

Files in This Item:
File Description SizeFormat 
JORIS POTIER_THESIS.pdf46.13 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons