Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/102415
Title: Crystalline and vibrational properties of kesterites
Author: Dimitrievska, Mirjana
Director/Tutor: Izquierdo Roca, Victor
Pérez Rodríguez, Alejandro
Garrido Fernández, Blas
Keywords: Cristal·lització
Generació d'energia fotovoltaica
Espectroscòpia Raman
Crystallization
Photovoltaic power generation
Raman spectroscopy
Issue Date: 21-Dec-2015
Publisher: Universitat de Barcelona
Abstract: [eng] The main objective of this thesis is to deepen the knowledge of fundamental properties of kesterite materials (Cu2ZnSnS4 and Cu2ZnSnSe4) and their solid solutions Cu2ZnSn(S,Se)4, which are used as absorber layers in solar cells. This principally included full characterization of structural and vibrational properties of these materials mainly using various Raman spectroscopy techniques. Special focus is put on the investigation of defect dynamics in kesterites, especially on the experimental identification of defects and their effect on the optoelectronic properties and thus the performance of solar cells devices. Additionally, among the objectives of the thesis was development of Raman based methodologies for the compositional assessment of these materials, as well as obtaining more information regarding the fundamental properties of ZnSSe secondary phase. The results were shown in the series of articles which have been published in high impact peer-review journals. In the first part of the thesis, a complete analysis of all Raman active modes of the stoichiometric Cu2ZnSnS4, Cu2ZnSnSe4 and Cu2ZnSn(S,Se)4 compounds was made using six different excitation wavelengths from near infrared to ultraviolet. Based on the first principle simulations, normal displacements of each Raman mode were calculated and provided insightful knowledge about the involvement of atoms in vibrations corresponding to different modes. Additionally defect dynamics in kesterite materials was explored. Asymmetry in the shape of the low frequency region of the main Raman modes has been observed for Cu2ZnSnS4 samples with different crystal quality. This has been attributed to phonon confinement effects which are arising from the loss of translational symmetry in the crystal caused by a high density of defects. Based on this model, a simple methodology independent of measuring conditions is proposed for the quantitative assessment of crystal quality through the correlation length. After this, the effect of specific defect clusters on the Raman spectra and optoelectronic properties was investigated. Combinatorial Cu2ZnSnSe4 thin films with lateral compositional gradients were synthesized and made into solar cell devices (around 200 cells per sample), in order to study the correlation between the optoelectronic properties and absorber composition. Furthermore, detailed analysis of the Raman spectra has allowed investigation of the changes in the relative intensity of Raman peaks in relation to the occurrence of different kinds of defect clusters. Finally, the influence of point defects and secondary phases on the performance of Cu2ZnSnSe4 devices was presented. Last part of the thesis was dedicated to development of a methodology for the quantitative assessment of the anion composition of Cu2ZnSn(S,Se)4 solid solutions using Raman spectroscopy. The methodology is based on the analysis of the integral intensity ratio of Raman bands sensitive to anion vibrations. Finally, a fundamental study, based on experimental and theoretical investigation, of the Raman resonance effects in ZnSSe solid solutions was presented. The Raman scattering intensities of LO ZnS-like and ZnSe-like phonon modes, corresponding to pure S and Se vibrations, respectively, were revealed to be significantly enhanced when excited with 325 nm excitation in the case of S vibrations, and with 455 nm in the case of Se vibrations. This behavior was explained by the interaction of the excitation photons with the corresponding S or Se electronic states in the conduction band, and further confirmed by first principles simulations. In conclusion, the works presented in this thesis are a significant contribution to the study of fundamental properties of materials in general, and kesterites materials in particular. Additionally, due to the unique approach of utilizing Raman spectroscopy with other characterization techniques, these methods could prove to be very successful in structure/function studies of other multinary compounds which are gaining increasing interest for electronic applications.
[spa] El objetivo principal de esta tesis es mejorar el conocimiento de las propiedades fundamentales de los compuestos de kesterita (Cu2ZnSnS4 and Cu2ZnSnSe4) y sus soluciones solidos Cu2ZnSn(S,Se)4 para uso como absorbedor en células solares. Esto constituye de la caracterización completa de las propiedades estructurales y vibracional utilizando la espectroscopia Raman. Adicionalmente, está el desarrollo de metodologías basado en Raman para la valoración composicional de estos materiales. Estos resultados están destacados en una serie de artículos publicados en revistas de peer-review de alto impacto. Un análisis completo de todos los modos activos de Raman de los compuestos estequiometricas de kesterita se realizó utilizando seis diferentes longitudes de onda de excitación, desde el infrarrojo hasta la ultravioleta. A partir de la base de simulaciones de primeros principios, los desplazamientos normales de cada modo Raman fueron calculados y dan un conocimiento útil sobre la participación de átomos en vibraciones correspondientes a diferentes modos. Un énfasis especial se da a la investigación de la dinámica de defectos en las kesteritas, en particular a la identificación experimental de los defectos y sus efectos sobre las propiedades optoelectrónicas, incluso el rendimiento, de dispositivos de células solares. También se desarrollo de una metodología para la valoración quantativa de la composición de aniones de soluciones solidos de Cu2ZnSn(S,Se)4 utilizando la espectroscopia Raman. Esta metodología se basa en la analisis de la intensidad integral de las bandas Raman más sensibles a vibraciones de los aniones. Por último, hay un estudio teórica y experimental del aumento en intensidad de los modos Raman de compuestos ZnSSe, bajo varias condiciones de resonancia, lo cual resulta en una mejora del conocimiento de la parte que juega los estados electrónicos de los calcogenuros en la interacción de fotón-materia. En conclusión, el trabajo presentado en esta tesis es una contribución significante al estudio de las propiedades fundamentales de los materiales en general, y los compuestos de kesterita en particular. Adicionalmente, debido al uso complementario de la espectroscopia Raman con otras técnicas de caracterización, estos métodos puedan resultar en ser muy útiles en estudios de estructura/función de otros compuestos multinarios, los cuales están ganado más interés para aplicaciones electrónicas.
URI: http://hdl.handle.net/2445/102415
Appears in Collections:Tesis Doctorals - Departament - Electrònica

Files in This Item:
File Description SizeFormat 
MIRJANA DIMITREIVSKA_THESIS.pdf32.66 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.