Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/102442
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGad, Alaaeldin-
dc.contributor.authorHoffmann, Martin W. G.-
dc.contributor.authorCasals Guillén, Olga-
dc.contributor.authorMayrhofer, Leonhard-
dc.contributor.authorFábrega, Cristian-
dc.contributor.authorCaccamo, Lorenzo-
dc.contributor.authorHernández Ramírez, Francisco-
dc.contributor.authorMohajerani, Matin S.-
dc.contributor.authorMoseler, Michael-
dc.contributor.authorShen, Hao-
dc.contributor.authorWaag, Andreas-
dc.contributor.authorPrades García, Juan Daniel-
dc.date.accessioned2016-10-07T11:21:15Z-
dc.date.available2017-09-29T22:01:29Z-
dc.date.issued2016-09-29-
dc.identifier.issn2379-3694-
dc.identifier.urihttp://hdl.handle.net/2445/102442-
dc.description.abstractInorganic conductometric gas sensors struggle to overcome limitations in high power consumption and poor selectivi-ty. Herein, recent advances in developing self-powered gas sensors with tunable selectivity are introduced. Alternative general approaches for powering gas sensors were realized via proper integration of complementary functionalities (namely; powering and sensing) in a singular heterostructure. These solar light driven gas sensors operating at room temperature without applying any additional external powering sources are comparatively discussed. The TYPE-1 gas sensor based on integration of pure inorganic interfaces (e.g. CdS/n-ZnO/p-Si) is capable of delivering a self-sustained sensing response, while it shows a non-selective interaction towards oxidizing and reducing gases. The structural and the optical merits of TYPE-1 sensor are investigated giving more insights into the role of light activation on the modu-lation of the self-powered sensing response. In the TYPE-2 sensor, the selectivity of inorganic materials is tailored through surface functionalization with self-assembled organic monolayers (SAMs). Such hybrid interfaces (e.g. SAMs/ZnO/p-Si) have specific surface interactions with target gases compared to the non-specific oxidation-reduction interactions governing the sensing mechanism of simple inorganic sensors. The theoretical modeling using density functional theory (DFT) has been used to simulate the sensing behavior of inorganic/organic/gas interfaces, revealing that the alignment of organic/gas frontier molecular orbitals with respect to the inorganic Fermi level is the key factor for tuning selectivity. These platforms open new avenues for developing advanced energy-neutral gas sensing devices and concepts.-
dc.format.extent11 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Chemical Society-
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1021/acssensors.6b00508-
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1021/acssensors.6b00508-
dc.relation.ispartofACS Sensors, 2016, vol.1, num.10, p. 1256–1264-
dc.relation.urihttp://dx.doi.org/10.1021/acssensors.6b00508-
dc.rights(c) American Chemical Society , 2016-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationDetectors de gasos-
dc.subject.classificationNanoestructures-
dc.subject.classificationSemiconductors-
dc.subject.otherGas detectors-
dc.subject.otherNanostructures-
dc.subject.otherSemiconductors-
dc.titleIntegrated Strategy toward Self-Powering and Selectivity Tuning of Semiconductor Gas Sensors-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec664220-
dc.date.updated2016-10-07T11:21:20Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/336917/EU//BETTERSENSE-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))
Publicacions de projectes de recerca finançats per la UE
Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
664220.pdf1.13 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.