Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/103747
Title: Development of electrochemical platforms for DNA sensing
Author: Alfonso Pardo, Wilmer
Director/Tutor: Mir Llorente, Mònica
Samitier i Martí, Josep
Keywords: Electroquímica
ADN
Microfluídica
Biosensors
Electrochemistry
DNA
Microfluidics
Issue Date: 8-Feb-2016
Publisher: Universitat de Barcelona
Abstract: [eng] The present doctoral thesis is framed in the research and development (R & D) project between a private biotechnology company of molecular diagnostics Genomica SAU, the Institute for Bioengineering of Catalonia (IBEC), the University of Barcelona, and the Microfluidics ChipShop Company. The main objective of the project is making, implementation and marketing of a diagnostic device for early detection of DNA sequences involved with cancer. The multi device, or lab-on-chip (LOC), consists of a central automation unit (CAU), a system in miniature of DNA amplification or chain reaction polymerase (mini-PCR), and a biosensing platform (DNA chip) that consisting of a matrix or electrochemical array. The three elements are integrated by a microfluidic system in sandwich format cartridge. For this purpose, the aim of this thesis was the creation, characterization and optimization of the biochemical recognition platform between two single strands of DNA of dissimilar lengths but with some complementary sequences for the subsequent electrochemical detection of a hybridization event between them. Then, the integration into the cartridge of above platform was done. For the creation of this platform, we chose to use a self-assembled monolayer (SAM) of thiols as biorecognition interface of the 14 DNA sequences that are part of the project. During optimization of the interface chips individual gold and various molecules were used being chosen the molecule with two arms disulfide of polyethylene glycol (PEG) and a malaimida group at the end of one of them. This linker (or MalPEG linker) reacts with the gold surface due to the dative interaction between the sulfur atoms of the disulfide and the gold atoms from the surface of the chips. At the same time, the malaimida group reacts with the thiol group of the capture probes, joining. The PEG groups function as anti-adhesion molecules. Surface plasmon resonance (SPR) and cyclic voltammetry (CV) were techniques used to characterize the substrate and the hybridization event. For the manufacture of the cartridge, this was divided into two main blocks, the biosensing or electrochemical block and PCR block. The electrochemical block is composed of 4 layers, one of 64 working electrodes and gold paths for contact with the potentiostat, another layer that defines the area of the sensors must be functionalized gold and isolating the gold surface of the tracks. The third layer is a double-sided adhesive that has a hexagonal hole working as hybridization chamber, and the last layer is a screen printing layer with the reference electrode (RE) and counter electrodes. The above layers form an electrochemical cell wherein the hybridization will occurs. Regarding the PCR block, this is a system of two layers with a type microfluidic channel kind loop and its function is to contain the solutions during the process of DNA amplification by the mini-PCR. During the integration of the optimized SAM into an electrochemical cartridge a manual and automated ways were used to immobilize the capture probes. Several tests were performed in order to obtain the best conditions and ratios between the molecules to maximize the hybridization signal during the electrochemical detection.
[spa] El presente trabajo de tesis está enmarcado en un proyecto de investigación y desarrollo (I+D) entre la empresa privada Genomica S.A.U., el Instituto de Bioingeniería de Cataluña (IBEC), la Universidad de Barcelona y la empresa alemana ChipShop Microfluidics. El objetivo principal es el desarrollo, puesta a punto y comercialización de un dispositivo electroquímico de diagnóstico médico para etapas tempranas de cáncer. El objetivo de la tesis es la creación, optimización y posterior integración de una interfaz de biosensado de ADN en el dispositivo de diagnóstico, siendo pieza fundamental en el desarrollo de éste. La interfaz escogida fue una monocapa autoensamblada (SAM) que hace las veces de biosensor y que es capaz de anclar secuencias de ADN como sondas de captura y así poder detectar, selectivamente, las secuencias objetivo complementarias. El dispositivo también cuenta con un sistema microfluídico y un sistema de amplificación de ADN de reacción en cadena de la polimerasa en miniatura. La SAM esta inmovilizada en un array electroquímico que consta de 64 electrodos de trabajo que funcionan como elemento transductor de la señal electroquímica redox de los eventos de hibridación que ocurren sobre ellos. La funcionalización y puesta a punto del dispositivo se llevó a cabo inmovilizando múltiples sondas de captura después de una optimización de las concentraciones entre las diferentes partes constituyentes de la monocapa. Técnicas ópticas y electroquímicas fueron utilizadas para la caracterización de cada etapa y técnicas de fotolitografiado y de impresión por pantalla fueron utilizadas para la fabricación de los componentes del dispositivo. Finalmente, y después de algunos cambios surgidos durante el desarrollo del dispositivo, se llega a un diseño final y a las pruebas con muestras reales, proceso que aún está en etapa experimental.
URI: http://hdl.handle.net/2445/103747
Appears in Collections:Tesis Doctorals - Departament - Electrònica

Files in This Item:
File Description SizeFormat 
WILMER A . PRADO_Tesis_impresion.PDF6.99 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.