Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/104353
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTrejo Soto, Claudia Andrea-
dc.contributor.authorCosta Miracle, E.-
dc.contributor.authorRodríguez-Villarreal, Ivón-
dc.contributor.authorCid Vidal, Joan-
dc.contributor.authorAlarcón Cor, Tomás-
dc.contributor.authorHernández Machado, Aurora-
dc.date.accessioned2016-12-01T15:06:20Z-
dc.date.available2016-12-01T15:06:20Z-
dc.date.issued2016-04-22-
dc.identifier.issn1932-6203-
dc.identifier.urihttp://hdl.handle.net/2445/104353-
dc.description.abstractWe propose an experimental and theoretical framework for the study of capillary filling at the micro-scale. Our methodology enables us to control the fluid flow regime so that we can characterise properties of Newtonian fluids such as their viscosity. In particular, we study a viscous, non-inertial, non-Washburn regime in which the position of the fluid front increases linearly with time for the whole duration of the experiment. The operating shear-rate range of our apparatus extends over nearly two orders of magnitude. Further, we analyse the advancement of a fluid front within a microcapillary in a system of two immiscible Newtonian liquids. We observe a non-Washburn regime in which the front can accelerate or decelerate depending on the viscosity contrast between the two liquids. We then propose a theoretical model which enables us to study and explain both non-Washburn regimes. Furthermore, our theoretical model allows us to put forward ways to control the emergence of these regimes by means of geometrical parameters of the experimental set-up. Our methodology allows us to design and calibrate a micro-viscosimetre which works at constant pressure.-
dc.format.extent18 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherPublic Library of Science (PLoS)-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1371/journal.pone.0153559-
dc.relation.ispartofPLoS One, 2016, vol. 11, num. 4, p. e0153559-
dc.relation.urihttps://doi.org/10.1371/journal.pone.0153559-
dc.rightscc-by (c) Trejo Soto, Claudia Andrea et al., 2016-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationViscositat-
dc.subject.classificationGlicols-
dc.subject.classificationFluids-
dc.subject.classificationPlasma sanguini-
dc.subject.otherViscosity-
dc.subject.otherGlycols-
dc.subject.otherFluids-
dc.subject.otherBlood plasma-
dc.titleCapillary filling at the microscale: control of fluid front using geometry-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec660879-
dc.date.updated2016-12-01T15:06:26Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid27104734-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
660879.pdf1.06 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons