Please use this identifier to cite or link to this item:
Title: Automatic image colorization
Author: Pascual, Guillem
Director/Tutor: Seguí Mesquida, Santi
Keywords: Xarxes neuronals (Informàtica)
Aprenentatge automàtic
Treballs de fi de grau
Processament digital d'imatges
Mineria de dades
Neural networks (Computer science)
Machine learning
Computer software
Bachelor's thesis
Digital image processing
Data mining
Issue Date: 28-Jun-2016
Abstract: Colorizing is the act of giving color to grayscale images. A convolutional-neural-network-based method to colorize images without human interaction is presented in this project. Various frameworks, architectures, color spaces and approximations are explored to obtain the final model, capable of correctly restoring the original color of photographies without any further information than the image itself. The principal aim of this project is to propose an idempotent architecture that could be trained with all kinds of images and yet produce good results. To demonstrate how the process works and show the obtained results, three categories of images will be used along this project: synthetic images representing numbers, landscape images and human faces.
Note: Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Santi Seguí Mesquida
Appears in Collections:Treballs Finals de Grau (TFG) - Enginyeria Informàtica
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria8.59 MBAdobe PDFView/Open
codi_font.zipCodi font40.05 MBzipView/Open

This item is licensed under a Creative Commons License Creative Commons