Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/105539
Title: Role of human Organic Cation Transporter 1 (hOCT1) polymorphisms in lamivudine (3TC) uptake and drug-drug interactions.
Author: Arimany Nardi, Cristina
Minuesa, Gerard
Keller, Thorsten
Erkizia, Itziar
Koepsell, Hermann
Martínez Picado, Francisco Javier
Pastor Anglada, Marçal
Keywords: Farmacogenètica
Malalties infeccioses
VIH (Virus)
Terapèutica
Pharmacogenetics
Communicable diseases
HIV (Viruses)
Therapeutics
Issue Date: 24-Jun-2016
Publisher: Frontiers Media
Abstract: Lamivudine (3TC), a drug used in the treatment of HIV infection, needs to cross the plasma membrane to exert its therapeutic action. Human Organic cation transporter 1 (hOCT1), encoded by the SLC22A1 gene, is the transporter responsible for its uptake into target cells. As SLC22A1 is a highly polymorphic gene, the aim of this study was to determine how SNPs in the OCT1-encoding gene affected 3TC internalization and its interaction with other co-administered drugs. HEK293 cells stably transfected with either the wild type form or the polymorphic variants of hOCT1 were used to perform kinetic and drug-drug interaction studies. Protein co-immunoprecipitation was used to assess the impact of selected polymorphic cysteines on the oligomerization of the transporter. Results showed that 3TC transport efficiency was reduced in all polymorphic variants tested (R61C, C88R, S189L, M420del, and G465R). This was not caused by lack of oligomerization in case of variants located at the transporter extracellular loop (R61C and C88R). Drug-drug interaction measurements showed that co-administered drugs [abacavir (ABC), zidovudine (AZT), emtricitabine (FTC), tenofovir diproxil fumarate (TDF), efavirenz (EFV) and raltegravir (RAL)], differently inhibited 3TC uptake depending upon the polymorphic variant analyzed. These data highlight the need for accurate analysis of drug transporter polymorphic variants of clinical relevance, because polymorphisms can impact on substrate (3TC) translocation but even more importantly they can differentially affect drug-drug interactions at the transporter level.
Note: Reproducció del document publicat a: https://doi.org/10.3389/fphar.2016.00175
It is part of: Frontiers in Pharmacology, 2016, vol. 7, p. 175
URI: http://hdl.handle.net/2445/105539
Related resource: https://doi.org/10.3389/fphar.2016.00175
ISSN: 1663-9812
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)

Files in This Item:
File Description SizeFormat 
663314.pdf3.01 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons