Please use this identifier to cite or link to this item:
Title: Data science aplicat a resultats acadèmics per a la millora del pla d’acció tutorial a la Universitat de Barcelona
Author: Portell Penadés, Laura
Director: Puertas i Prats, Eloi
Keywords: Dades massives
Algorismes computacionals
Treballs de fi de grau
Visualització (Informàtica)
Mineria de dades
Rendiment acadèmic
Tutoria (Ensenyament)
Big data
Computer algorithms
Computer software
Bachelor's thesis
Information display systems
Data mining
Academic achievement
Tutoring (Teaching)
Issue Date: 30-Jun-2016
Abstract: Academic tutors at universities find themselves without enough tools or material to help their students due to the lack of knowledge of each student’s academic profile. For this reason, we have performed a comprehensive study of student data in order to obtain supplementary material for the tutor. Clusterization algorithms have been used to separate the students into groups to identify general characteristics of the students belonging to a particular cluster. Dropout of each cluster and relationships between groups have been studied as well. A k-NN classifier has been used to create a prediction model which is able to predict in which cluster a student will belong the next academic year. Finally, visualization technics have been used to present the results of the analysis.
Note: Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Eloi Puertas i Prats
Appears in Collections:Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria10.86 MBAdobe PDFView/Open
codi_font.zipCodi font1.23 MBzipView/Open

This item is licensed under a Creative Commons License Creative Commons