Please use this identifier to cite or link to this item:
Title: Detecting arguments similarity to compact on-line debates
Author: Soler Planas, Martí
Director: López Sánchez, Maite
Rodríguez-Aguilar, Juan A. (Juan Antonio)
Keywords: Tractament del llenguatge natural (Informàtica)
Aprenentatge automàtic
Treballs de fi de grau
Comunitats virtuals
Anàlisi de la conversa
Natural language processing (Computer science)
Machine learning
Bachelor's thesis
Online social networks
Conversation analysis
Issue Date: 30-Jun-2016
Abstract: Discussion has changed enormously over the last decades. Thanks to the internet and advancements on the field, we are able to have larger communities in a discussion and get higher quality results from it than ever before. Having a large number of individuals involved has lots of benefits, but it also carries some challenges. As a discussion grows larger, people have a tendency to start repeating arguments, this has been traditionally handled by a team of moderators. In this work we analyse the properties of these arguments, and we take advantage of those properties to make a specialized method to automatically detect syntactically different but semantically equivalent arguments. Thus reducing the amount of work carried out by moderators. We do so with the help of natural language processing and machine learning techniques.
Note: Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Maite López Sánchez i Juan Antonio Rodríguez-Aguilar
Appears in Collections:Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria2.49 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons