Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/107528
Title: Interpolation and sampling arrays in spaces of polynomials
Author: Cruz Rodríguez, Carlos Arturo
Director: Massaneda Clares, Francesc Xavier
Ortega Cerdà, Joaquim
Keywords: Funcions de variables complexes
Teoria del potencial (Matemàtica)
Tesis de màster
Espais funcionals
Functions of complex variables
Potential theory (Mathematics)
Masters theses
Function spaces
Issue Date: 21-Jun-2016
Abstract: We study the discretisation procedure of homogeneous polynomials in the unit sphere $\mathbb{S}\cong \mathbb{CP}^1$. This can be seen as a basic model of a more general problem of discretisation of sections of holomorphic line bundles over compact complex manifolds. Our aim is to obtain geometric necessary and sufficient conditions describing the discretising sequences. An important model for such sequences are the so-called Fekete arrays, which can be seen as nets adapted to the geometry of the sphere. The tools used in such description go back to the signal processing theory pioneered by Beurling and Landau.
Note: Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2016, Director: Francesc Xavier Massaneda Clares i Joaquim Ortega Cerdà
URI: http://hdl.handle.net/2445/107528
Appears in Collections:Màster - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria613.86 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons