Please use this identifier to cite or link to this item:
Title: Statistical comparison of classifiers applied to the interferential tear film lipid layer classification
Author: Remeseiro López, Beatriz
Penas, M.
Mosquera, A.
Novo, J.
Penedo, M.G.
Yebra-Pimentel, Eva
Keywords: Sistemes classificadors (Intel·ligència artificial)
Imatges mèdiques
Learning classifier systems
Imaging systems in medicine
Issue Date: 2012
Publisher: Hindawi
Abstract: The tear film lipid layer is heterogeneous among the population. Its classification depends on its thickness and can be done using the interference pattern categories proposed by Guillon. The interference phenomena can be characterised as a colour texture pattern, which can be automatically classified into one of these categories. From a photography of the eye, a region of interest is detected and its low-level features are extracted, generating a feature vector that describes it, to be finally classified in one of the target categories. This paper presents an exhaustive study about the problem at hand using different texture analysis methods in three colour spaces and different machine learning algorithms. All these methods and classifiers have been tested on a dataset composed of 105 images from healthy subjects and the results have been statistically analysed. As a result, the manual process done by experts can be automated with the benefits of being faster and unaffected by subjective factors, with maximum accuracy over 95%.
Note: Reproducció del document publicat a:
It is part of: Computational and Mathematical Methods in Medicine, 2012, vol. 2012
Related resource:
ISSN: 1748-670X
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
669257.pdf1.25 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons