Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/108964
Title: Brownian Dynamics Computational Model of protein Diffusion in Crowded Media with Dextran Macromolecules as Obstacles
Author: Blanco, Pablo M.
Via Nadal, Mireia
Garcés, Josep Lluís
Madurga Díez, Sergio
Mas i Pujadas, Francesc
Keywords: Moviment brownià
Hidrodinàmica
Processos de difusió
Macromolècules
Brownian movements
Hydrodynamics
Diffusion processes
Macromolecules
Issue Date: 9-Mar-2017
Publisher: MDPI
Abstract: The high concentration of macromolecules (i.e., macromolecular crowding) in cellular environments leads to large quantitative effects on the dynamic and equilibrium biological properties. These effects have been experimentally studied using inert macromolecules to mimic a realistic cellular medium. In this paper, two different experimental in vitro systems of diffusing proteins which use dextran macromolecules as obstacles are computationally analyzed. A new model for dextran macromolecules based on effective radii accounting for macromolecular compression induced by crowding is proposed. The obtained results for the diffusion coefficient and the anomalous diffusion exponent exhibit good qualitative and generally good quantitative agreement with experiments. Volume fraction and hydrodynamic interactions are found to be crucial to describe the diffusion coefficient decrease in crowded media. However, no significant influence of the hydrodynamic interactions in the anomalous diffusion exponent is found.
Note: Reproducció del document publicat a: https://doi.org/10.3390/e19030105
It is part of: Entropy, 2017, vol. 19, num. 3, p. 105
Related resource: https://doi.org/10.3390/e19030105
URI: http://hdl.handle.net/2445/108964
ISSN: 1099-4300
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
670348.pdf911.92 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons