Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVilaseca i Font, Eudald-
dc.contributor.authorPastor, Isabel-
dc.contributor.authorIsvoran, Adriana-
dc.contributor.authorMadurga Díez, Sergio-
dc.contributor.authorGarcés, Josep Lluís-
dc.contributor.authorMas i Pujadas, Francesc-
dc.description.abstractThe diffusion of tracer particles in 3D macromolecular crowded media has been studied using two methodologies, simulation and experimental, with the aim of comparing their results. Firstly, the diffusion of a tracer in an obstructed 3D lattice with mobile and big size obstacles has been analyzed through a Monte Carlo (MC) simulation procedure. Secondly, Fluorescence Recovery after Photobleaching (FRAP) experiments have been carried out to study the diffusion of a model protein (alpha-chymotrypsin) in in vitro crowded solution where two type of Dextran molecules are used as crowder agents. To facilitate the comparison the relative size between the tracer and the crowder is the same in both studies. The results indicate a qualitative agreement between the diffusional behaviors observed in the two studies. The dependence of the anomalous diffusion exponent and the limiting diffusion coefficient with the obstacle size and excluded volume shows, in both cases, a similar tendency. The introduction of a reduced mobility parameter in the simulation model accounting for the short range tracer-obstacle interactions allows to obtain a quantitative agreement between the limiting diffusion coefficient values yielded by both procedures. The simulation-experiment quantitative agreement for the anomalous diffusion exponent requires further improvements. As far as we know, this is the first reported work where both techniques are used in parallel to study the diffusion in macromolecular crowded media.-
dc.format.extent11 p.-
dc.publisherSpringer Verlag-
dc.relation.isformatofVersió postprint del document publicat a:
dc.relation.ispartofTheoretical Chemistry Accounts, 2011, vol. 128, num. 4, p. 795-805-
dc.rights(c) Springer Verlag, 2011-
dc.subject.classificationMètode de Montecarlo-
dc.subject.otherMonte Carlo method-
dc.titleDiffusion in macromolecular crowded media. Monte Carlo simulation of obstructed diffusion vs. FRAP experiments-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
578503.pdf1.33 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.