Please use this identifier to cite or link to this item:
Title: A tensor based approach for temporal topic modeling
Author: Julià Carrillo, Oriol
Director/Tutor: Vitrià i Marca, Jordi
Keywords: Tractament del llenguatge natural (Informàtica)
Treballs de fi de grau
Aprenentatge automàtic
Algorismes computacionals
Natural language processing (Computer science)
Bachelor's thesis
Machine learning
Computer algorithms
Issue Date: 26-Jun-2016
Abstract: Latent Dirichlet Allocation (LDA) are a suite of algorithms that are often used for topic modeling. We study the statistical model behind LDA and review how tensor methods can be used for learning LDA, as well as implement a variation of an already existing method. Next, we present an innovative algorithm for temporal topic modeling and provide a new dataset for learning topic models over time. Last, we create a visualization for the word-topic probabilities.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Jordi Vitrià i Marca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria10.11 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons