Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/109620
Title: Llei de Benford
Author: Huang, Wei
Director: Fortiana Gregori, Josep
Keywords: Distribució (Teoria de la probabilitat)
Tesis
Nombres
Censos
Frau
Distribution (Probability theory)
Theses
Numerals
Census
Fraud
Issue Date: 27-Jun-2016
Abstract: This work is about Benford’s Law (also know as first digit law) that asserts that, in some situations, the fraction of numbers that start with the digit $d$ is not the intuitively –and yet reasonable– 1/9 but the remarkable log $_{10} (1 + d ^{−1} )$. We also study, in a generalized way, the behaviour of the others digits and we will see how certains sequences (Fibonacci’s numbers, powers, etc) follows almost perfectly the values predicted by the law. Finally we will discuss daily situations that also follows the Benford’s Law (lists populations, payments, etc).
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Josep Fortiana Gregori
URI: http://hdl.handle.net/2445/109620
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria1.03 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons