Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/110062
Title: Estudio Geológico y Metalogenético del Basamento Precámbrico del Sahara Occidental
Author: Nayem, Saleh Lehbib
Director: Melgarejo i Draper, Joan-Carles
Arribas Moreno, Antonio
Keywords: Mineralogia
Petrologia
Geocronologia
Metal·logènia
Mineralogy
Petrology
Geochronology
Metallogeny
Issue Date: 28-Sep-2016
Publisher: Universitat de Barcelona
Abstract: [spa] En el Sáhara Occidental hay dos unidades principales: la cobertera sedimentaria del Fanerozoico y un basamento cristalino que forma parte del cratón del África Occidental, constituido desde el Paleoarcaico al Paleoproterozoico. A su vez, en el basamento se ha definido una serie de dominios o terranes, delimitados por fallas regionales, que responden a microcontinentes que colisionaron principalmente durante la orogenia Birimiense y la Hercínica. Los primeros estadios de granitización parecen producirse entre el Paleoproterozoico y el Mesoproterozoico dependiendo del dominio, pero el primer gran episodio de plutonismo de tipo TTG generalizado es en la orogenia Leoniana (hacia 3 Ga). Se forman importantes depósitos de BIF en cuencas de “greenstone belts”. El ciclo Liberiense comienza con diques y “sills” ultrabásicos asociados a una pluma mantélica, que evoluciona a una LIP constituida por enjambres de diques de diabasa; en el resto de sectores se produce la individualización de los microcontinentes. El final del ciclo implica la colisión parcial de algunos de estos dominios y procesos de subducción que generan magmatismo calcoalcalino. El proceso de rift en el límite Arcaico- Proterozoico produce magmatismo alcalino saturado y subsaturado, con indicios de elementos raros. Localmente se individualizan cuencas sedimentarias submarinas en las que se forman depósitos importantes de BIF. Durante el Paleoproterozoico se produce la convergencia de la mayoría de las microplacas; en las zonas de suprasubducción se produce un magmatismo calcoalcalino; con el cierre de los océanos y la colisión continental se forman complejos ofiolíticos, a veces con mineralizaciones de Cr-PGE y depósitos de oro orogénico. Esta orogenia produce la cratonización de la mayor parte de los dominios. Los granitos alcalinos asociados al rift posterior son en cambio estériles. El magmatismo calcoalcalino asociado a la orogenia Kibariense en el margen occidental del crató n no par ece haber gener ado depósitos, pero los granitos alcalinos que cierran el ciclo contienen concentraciones muy altas de REE y Nb. La orogenia Panafricana determina la aparición de magmatismo calcoalcalino en el borde occidental del cratón, así como una nueva colisión con el dominio oriental de los Mauritánides, que se cratoniza. El proceso de rifting subsecuente genera rocas alcalinas saturadas y subsaturadas estériles. Los márgenes continentales así formados facilitan la sedimentación de series de plataforma del Paleozoico, en los que se encuentran mineralizaciones de Fe oolítico en el Devónico inferior. Durante la orogenia hercínica se produce la colisión continental de todos estos dominios y Laurussia, formándose el supercontinente de Pangea. En este contexto los cabalgamientos asociados pueden formar mineralizaciones de oro orogénico, y pueden darse mineralizaciones de Cr podiforme (PGE) en ofiolitas. Finalmente, la apertura del Atlántico N desde el Triásico superior-Jurásico produce el desarrollo de carbonatitas en el dominio más occidental de los Mauritánides, asimismo con mineralización de elementos raros. Los márgenes continentales así formados permiten el desarrollo de series de plataforma ricas en yacimientos de fosfatos y con potencial para petróleo. En el curso de este t rabajo se han descubierto varios depósitos minerales, pr incipalmente en el basamento del Precámbrico. Los depósitos de menas metálicas más interesantes son los siguientes: a) Los depósitos ortomagmáticos de Cr- PGE -Ti-V en el complejo estratiforme de Bir Malhat, con continuidades de decenas de km b) Los depósitos de Cr-PGE en cromititas podiformes en contextos oceánicos del Proterozoico de los Mauritánides. c) Los depósitos de Au-(PGE) orogénico asociados a zonas de cizalla, tanto en forma de listwänitas-birbiritas, sistemas filonianos o mineralizaciones estratoligadas asociadas a los mismos, correspondiendo a cizallas formadas en épocas panafricanas (dominios de Tifariti-Bir Lehlu-Ain ben Tili y de Sfariat) o hercínicas (Mauritánides). d) Los depósitos de BIF en series submarinas; si bien estos depósitos se encuentran en todos los dominios, los más interesantes por su continuidad y leyes se encuentran en las zonas de Sfariat y Miyec-Ijil. e) depósitos de Nb-Ta-LREE-U-Fe-V- P-Mo en carbonatitas, importantes tanto en las de edades del Proterozoico como en las del Cretácico. f) depósitos de Nb-Ta-F-HREE-U-Th en rocas alcalinas saturadas o subsaturadas, preferentmente en las enriquecidas en F. g) depósitos de Fe oolítico en las series de plataforma del Devónico inferior, de grandes reservas. h) depósitos de fosforitas y petróleo asociados a la cuenca sedimentaria de El Aaiún. i) Depósitos de U-(REE??) de edad Cuaternario , asociados a calcretas y ferricretas.
[eng] Two main geological units are distinguished in Western Sahara: a Phanerozoic sedimentary cover and a cryst a lline basement o f Paleoarchean to Paleoproterozoic age. This basement is a part of the Reguibat ridge, in the Western Africa craton. An ensemble of domains (or terranes) are distinguished in the basement. These domains are limited by regional fauls and correspond to old microcontinents collisioned mainly during the Birimian and Hercynian orogenies. Earlier granitization stages were produced in the Paleoarchean and the Mesoarchean depending on the domain, but the first generalized episode of TTG plutonism occurs in the Leonian orogeny ( circa 3 Ga). Important BIF deposits formed in greenstone belt basins. The Liberian cycle start with the intrusion of ultrabasic sills and dykes, associated with a mantle plume. This scenario evolved to a LIP made up by a dense network of diabase dykes; the individualization of the microcontinents took place in the rest of the area. Convergence of some of these microplates pr oduced subduction and a calc-alkaline magnatism and finally a collision between some of these domains at the end of this cycle. Rifting at the limit Archean-Proterozoic generated saturated and subsaturated alkaline magmatism. Showings of rare- element mineralization occur in these rocks. Submarine sedimentary basins are locally developed, and contain important BIF deposits. Most of the microplates converged during the Paleoproterozoic; calc-alkaline magmatism do occur in the suprasubduction zones; closing of the oceans and subsequent continental collision is associated with development of Cr- (PGE) bearing ophiolitic suites. Regional shear zones are associated with orogeenic gold deposits. This Birimain orogen produced the cratonization of most of the domains.. Alkaline granites intruded in a rft stage at the end of the orogeny, but they are barren. Calc-alkaline magmatism is also present during the Kibarian and Panafrican orogeny at the west border of the WAC, and is not mineralized; however, the alkaline granites of the rifting closing the Kibaran orogeny contain high concentrations of Nb and REE; those at the end of the end of the Panafrican are devoid of mineralization.. The continental margins of the craton allowed the sedimentation of thick platform series during the Paleozoic. The lower Devonian series hosts oolitic iron deposits. The general collision of all these domains and Laurussia during the Hercynian orogeny produced the Pangea supercontinent. In this context, the thrusts can carry orogenic gold deposits, and podiform Cr-(PGE) deposits outcrop in ophiolites. Finally, the opening of the North Atlantic since the Upper Triassic-Jurassic produced carbonatites at the western end of the WAC ; these carbonatites are enriched in rare elements. The continental margins formed in this epoch allowed the sedimentation of platform series thaht contain phospate deposits and have potential to contain oil. Western Sahara has a large potential for ore deposits, and some of them have been discovered during the development of this memory; most of them are hosted in the Precambrian materials: a) Stratiform Cr-PGE -Ti-V deposits associated with the Bir Malhat complex, and their continuity overpass 20 km. b) Podiform Cr-PGE chromitite deposits were produced in the Proterozoic of the Mauritanids. c) Orogenic gold deposits (Au-(PGE) are associated with the regional shear zones. There are several styles of mineralization: listwänites- birbirites, vein systems, or stratabound mineralizations replacing favourable host rocks in the vicinity of shear zones formed during the Birimian orogeny (Tifariti-Bir Lehlu-Ain ben Tili and Sfariat domains) o the Hercynian (Mauritanids). d) BIF deposits in submarine series. These deposits occur in most of the domains, but the Sfariat and Miyec-Ijil domains contain most of the largest reserves. e) Deposits of rare elements as Nb-Ta- LREE-U-Fe-V-P-Mo occur in the Proterozoic and Cretaceous carbonatites. f) Deposits of Nb-Ta-F-HREE-U-Th are found in undersaturated or saturated alkaline rocks, mainly in those enriched in F. g) Oolitic iron deposits have large reserves in the platform series of the Lower Devonian. h) World-class stratiform phosphorite deposits occur in the Paleogene El Aaiún sedimentary basin, which has also potential for oil deposits. i) Calcrete and ferricrete U-(REE??) deposits of Quaternary age.
URI: http://hdl.handle.net/2445/110062
Appears in Collections:Tesis Doctorals - Departament - Mineralogia, Petrologia i Geologia Aplicada

Files in This Item:
File Description SizeFormat 
01.SLN_1de24.pdfCapítulo 142.49 MBAdobe PDFView/Open    Request a copy
02.SLN_2de24.pdfCapítulo 227.09 MBAdobe PDFView/Open    Request a copy
03.SLN_3de24.pdfCapítulo 396.45 MBAdobe PDFView/Open    Request a copy
04.SLN_4de24.pdfCapítulo 4.129.9 MBAdobe PDFView/Open    Request a copy
05.SLN_5de24.pdfCapítulo 4.229.59 MBAdobe PDFView/Open    Request a copy
06.SLN_6de24.pdfCapítulo 4.34.45 MBAdobe PDFView/Open    Request a copy
07.SLN_7de24.pdfCapítulo 4.42.68 MBAdobe PDFView/Open    Request a copy
08.SLN_8de24.pdfCapítulo 4.53.24 MBAdobe PDFView/Open    Request a copy
09.SLN_9de24.pdfCapítulo 538.94 MBAdobe PDFView/Open    Request a copy
10.SLN_10de24.pdfCapítulo 6.156.04 MBAdobe PDFView/Open    Request a copy
11.SLN_11de24.pdfCapítulo 6.2114.17 MBAdobe PDFView/Open    Request a copy
12.SLN_12de24.pdfCapítulo 6.31.83 MBAdobe PDFView/Open    Request a copy
13.SLN_13de24.pdfCapítulo 6.45.76 MBAdobe PDFView/Open    Request a copy
14.SLN_14de24.pdfCapítulo 6.534.75 MBAdobe PDFView/Open    Request a copy
15.SLN_15de24.pdfCapítulo 742.88 MBAdobe PDFView/Open    Request a copy
16.SLN_16de24.pdfCapítulo 8.131.39 MBAdobe PDFView/Open    Request a copy
17.SLN_17de24.pdfCapítulo 8.2140 MBAdobe PDFView/Open    Request a copy
18.SLN_18de24.pdfCapítulo 8.32.53 MBAdobe PDFView/Open    Request a copy
19.SLN_19de24.pdfCapítulo 8.42.56 MBAdobe PDFView/Open    Request a copy
20.SLN_20de24.pdfCapítulo 8.54.11 MBAdobe PDFView/Open    Request a copy
21.SLN_21de24.pdfCapítulo 8.612.95 MBAdobe PDFView/Open    Request a copy
22.SLN_22de24.pdfCapítulo 910.26 MBAdobe PDFView/Open    Request a copy
23.SLN_23de24.pdfCapítulo 104.89 MBAdobe PDFView/Open    Request a copy
24.SLN_24de24.pdfCapítulo 11392.6 kBAdobe PDFView/Open    Request a copy


Embargat   Document embargat fins el 28-9-2017


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.