Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/11021
Title: Average ground-state energy of finite Fermi systems
Author: Centelles Aixalà, Mario
Leboeuf, P.
Monastra, A. G.
Roccia, J.
Schuck, Peter
Viñas Gausí, Xavier
Keywords: Estructura nuclear
Física nuclear
Mecànica estadística
Nuclear structure
Nuclear physics
Statistical mechanics
Issue Date: 2006
Publisher: The American Physical Society
Abstract: Semiclassical theories such as the Thomas-Fermi and Wigner-Kirkwood methods give a good description of the smooth average part of the total energy of a Fermi gas in some external potential when the chemical potential is varied. However, in systems with a fixed number of particles N, these methods overbind the actual average of the quantum energy as N is varied. We describe a theory that accounts for this effect. Numerical illustrations are discussed for fermions trapped in a harmonic oscillator potential and in a hard-wall cavity, and for self-consistent calculations of atomic nuclei. In the latter case, the influence of deformations on the average behavior of the energy is also considered.
Note: Reproducció digital del document publicat en format paper, proporcionada per PROLA i http://dx.doi.org/10.1103/PhysRevC.74.034332
It is part of: Physical Review C, 2006, vol. 74, núm. 3, p. 034332-1-034332-9
URI: http://hdl.handle.net/2445/11021
ISSN: 0556-2813
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
542422.pdf427.79 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.