Please use this identifier to cite or link to this item:
Title: Poncelet's porism
Author: Rojas González, Andrés
Director: Naranjo del Val, Juan Carlos
Keywords: Corbes algebraiques
Superfícies de Riemann
Corbes el·líptiques
Teoria de torsió (Àlgebra)
Algebraic curves
Riemann surfaces
Elliptic curves
Torsion theory (Algebra)
Issue Date: Jun-2016
Abstract: Given two non-degenerate conics $C$ and $D$ in the complex projective plane $\mathbb{P}^{2}_{\mathbb{C}}$ , consider the following problem: constructing a closed polygon inscribed in $C$ and circumscribed about $D$. Assuming that the polygon may have self-intersections, a first approach to build such a polygon could be the next one. Take an arbitrary point $p_0 \in C$ and choose $l_0$ one of the two tangent lines to $D$ passing through $p_0$. If the line $l_0$ is not tangent to $C$ there exists a point $p_1 \in {C} \cap l_0 $ different from $p_0$. Then, take $l_1 \neq l_0$ the tangent line to $D$ through $p_1$. In a similar way, $l_1$ must intersect $C$ at a point $p_2 \neq p_1$.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Juan Carlos Naranjo del Val
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria1.4 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons