Please use this identifier to cite or link to this item:
Title: Hopf Galois theory of separable field extensions
Author: Salguero Garcı́a, Marta
Director/Tutor: Crespo Vicente, Teresa
Keywords: Teoria de Galois
Treballs de fi de grau
Àlgebres de Hopf
Mòduls (Àlgebra)
Galois theory
Bachelor's thesis
Hopf algebras
Modules (Algebra)
Issue Date: 27-Jun-2016
Abstract: Hopf Galois theory is a generalization of Galois theory. Galois theory gives a bijective correspondence between intermediate fields of a Galois field extension (normal and separable) and subgroups of the Galois group. Hopf Galois theory substitutes the Galois group by a Hopf algebra. In the case of separable extensions it has a characterization of the Hopf Galois character in terms of groups. Thus, we use Magma in order to obtain all Hopf Galois structures of extensions of degree 8.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Teresa Crespo Vicente
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria482.29 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons