Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/112812
Title: Oxide-based nanomaterials for fuel cell catalysis: the interplay between supported Pt atoms and particles
Author: Lykhach, Yaroslava
Bruix Fusté, Albert
Fabris, Stefano
Potin, VValérie
Matolínová, Iva
Matolín, Vladimír
Libuda, Jörg
Neyman, Konstantin M.
Keywords: Catalitzadors
Materials nanoestructurats
Piles de combustible
Catalysts
Nanostructured materials
Fuel cells
Issue Date: 2-Jun-2017
Publisher: Royal Society of Chemistry
Abstract: The concept of single atom catalysis offers maximum noble metal efficiency for the development of low-cost catalytic materials. Among possible applications are catalytic materials for proton exchange membrane fuel cells. In the present review, recent efforts towards the fabrication of single atom catalysts on nanostructured ceria and their reactivity are discussed in the prospect of their employment as anode catalysts. The remarkable performance and the durability of the ceria-based anode catalysts with ultra-low Pt loading result from the interplay between two states associated with supported atomically dispersed Pt and sub-nanometer Pt particles. The occurrence of these two states is a consequence of strong interactions between Pt and nanostructured ceria that yield atomically dispersed species under oxidizing conditions and sub-nanometer Pt particles under reducing conditions. The square-planar arrangement of four O atoms on {100} nanoterraces has been identified as the key structural element on the surface of the nanostructured ceria where Pt is anchored in the form of Pt2+ species. The conversion of Pt2+ species to sub-nanometer Pt particles is triggered by a redox process involving Ce3+ centers. The latter emerge due to either oxygen vacancies or adsorption of reducing agents. The unique properties of the sub-nanometer Pt particles arise from metal-support interactions involving charge transfer, structural flexibility, and spillover phenomena. The abundance of specific adsorption sites similar to those on {100} nanoterraces determines the ideal (maximum) Pt loading in Pt-CeOx films that still allows reversible switching between the atomically dispersed Pt and sub-nanometer particles yielding high activity and durability during fuel cell operation.
Note: Versió postprint del document publicat a: https://doi.org/10.1039/c7cy00710h
It is part of: Catalysis Science & Technology, 2017
Related resource: https://doi.org/10.1039/c7cy00710h
URI: http://hdl.handle.net/2445/112812
ISSN: 2044-4753
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
671978.pdf22.81 MBAdobe PDFView/Open    Request a copy


Embargat   Document embargat fins el 2-6-2018


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.