Please use this identifier to cite or link to this item:
Title: Quantum dynamics of H2 in a carbon nanotube: separation of time scales and resonance enhanced tunneling
Author: Mondelo Martell, Manel
Huarte Larrañaga, Fermín
Manthe, Uwe
Keywords: Nanotubs
Teoria quàntica
Quantum theory
Issue Date: 28-Aug-2017
Publisher: American Institute of Physics
Abstract: Quantum confinement effects are known to affect the behavior of molecules adsorbed in nanostructured materials. In order to study these effects on the transport of a single molecule through a nanotube, we present a quantum dynamics study on the diffusion of H2 in a narrow (8,0) carbon nanotube in the low pressure limit. Transmission coefficients for the elementary step of the transport process are calculated using the flux correlation function approach and diffusion rates are obtained using the single hopping model. The different time scales associated with the motion in the confined coordinates and the motion along the nanotube's axis are utilized to develop an efficient and numerically exact approach, in which a diabatic basis describing the fast motion in the confined coordinate is employed. Furthermore, an adiabatic approximation separating the dynamics of confined and unbound coordinates is studied. The results obtained within the adiabatic approximation agree almost perfectly with the numerically exact ones. The approaches allow us to accurately study the system's dynamics on the picosecond time scale and resolve resonance structures present in the transmission coefficients. Resonance enhanced tunneling is found to be the dominant transport mechanism at low energies. Comparison with results obtained using transition state theory shows that tunneling significantly increases the diffusion rate at T < 120 K.
Note: Reproducció del document publicat a:
It is part of: Journal of Chemical Physics, 2017, vol. 147, num. 8, p. 084103-1-084103-9
Related resource:
ISSN: 0021-9606
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
673292.pdf833.18 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.