Please use this identifier to cite or link to this item:
Title: The appraisal of machine learning techniques for tourism demand forecasting [Capítol de llibre]
Author: Clavería González, Óscar
Monte Moreno, Enric
Torra Porras, Salvador
Keywords: Aprenentatge automàtic
Distribució de Gauss
Anàlisi de regressió
Machine learning
Gaussian distribution
Regression analysis
Issue Date: 2017
Publisher: Nova Science Publishers, Inc.
Abstract: Machine learning (ML) methods are being increasingly used with forecasting purposes. This study assesses the predictive performance of several ML models in a multiple-input multiple-output (MIMO) setting that allows incorporating the cross-correlations between the inputs. We compare the forecast accuracy of a Gaussian process regression (GPR) model to that of different neural network architectures in a multi-step-ahead time series prediction experiment. We find that the radial basis function (RBF) network outperforms the GPR model, especially for long-term forecast horizons. As the memory of the models increases, the forecasting performance of the GPR improves, suggesting the convenience of designing a model selection criteria in order to estimate the optimal number of lags used for concatenation.
It is part of: Capítol del llibre: “Machine Learning: Advances in Research and Applications”, ISBN: 978-1-53612-570-2 Editors: Roger Inge and Jan Leif, Nova Science Publishers, Inc. 2017. pp. 59-90
Appears in Collections:Llibres / Capítols de llibre (Econometria, Estadística i Economia Aplicada)

Files in This Item:
File Description SizeFormat 
Book Machine Learning (2017) - Chapter 2 - pp 59-90 - postprint.pdf395.08 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.