Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/118749
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSachot, Nadège-
dc.contributor.authorRoguska, Agata-
dc.contributor.authorPlanell, J. A. (Josep Anton)-
dc.contributor.authorLewandowska, Malgorzata-
dc.contributor.authorEngel, Elisabeth-
dc.contributor.authorCastaño Linares, Óscar-
dc.date.accessioned2017-12-15T14:45:49Z-
dc.date.available2017-12-15T14:45:49Z-
dc.date.issued2017-07-11-
dc.identifier.issn1176-9114-
dc.identifier.urihttp://hdl.handle.net/2445/118749-
dc.description.abstractThe success of scaffold implantation in acellular tissue engineering approaches relies on the ability of the material to interact properly with the biological environment. This behavior mainly depends on the design of the graft surface and, more precisely, on its capacity to biodegrade in a well-defined manner (nature of ions released, surface-to-volume ratio, dissolution profile of this release, rate of material resorption, and preservation of mechanical properties). The assessment of the biological behavior of temporary templates is therefore very important in tissue engineering, especially for composites, which usually exhibit complicated degradation behavior. Here, blended polylactic acid (PLA) calcium phosphate ORMOGLASS (organically modified glass) nanofibrous mats have been incubated up to 4 weeks in physiological simulated conditions, and their morphological, topographical, and chemical changes have been investigated. The results showed that a significant loss of inorganic phase occurred at the beginning of the immersion and the ORMOGLASS maintained a stable composition afterward throughout the degradation period. As a whole, the nanostructured scaffolds underwent fast and heterogeneous degradation. This study reveals that an angiogenic calcium-rich environment can be achieved through fast-degrading ORMOGLASS/PLA blended fibers, which seems to be an excellent alternative for guided bone regeneration.-
dc.format.extent19 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherDove Medical Press-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.2147/IJN.S135806-
dc.relation.ispartofInternational Journal of Nanomedicine, 2017, vol. 12, p. 4901-4919-
dc.relation.urihttps://doi.org/10.2147/IJN.S135806-
dc.rightscc-by-nc (c) Sachot, N. et al., 2017-
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationEnginyeria de teixits-
dc.subject.classificationAngiogènesi-
dc.subject.classificationNanoestructures-
dc.subject.classificationBiodegradació-
dc.subject.otherTissue engineering-
dc.subject.otherNeovascularization-
dc.subject.otherNanostructures-
dc.subject.otherBiodegradation-
dc.titleFast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec674776-
dc.date.updated2017-12-15T14:45:49Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid28744124-
Appears in Collections:Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))
Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
674776.pdf3.32 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons