Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/119260
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBautista Martín, Miguel Ángel-
dc.contributor.authorHernández-Vela, Antonio-
dc.contributor.authorEscalera Guerrero, Sergio-
dc.contributor.authorIgual Muñoz, Laura-
dc.contributor.authorPujol Vila, Oriol-
dc.contributor.authorMoya, Josep-
dc.contributor.authorViolant, Verónica-
dc.contributor.authorAnguera Argilaga, María Teresa-
dc.date.accessioned2018-01-24T11:58:12Z-
dc.date.available2018-01-24T11:58:12Z-
dc.date.issued2016-01-
dc.identifier.issn2168-2267-
dc.identifier.urihttp://hdl.handle.net/2445/119260-
dc.description.abstractWe present an application of gesture recognition using an extension of dynamic time warping (DTW) to recognize behavioral patterns of attention deficit hyperactivity disorder (ADHD). We propose an extension of DTW using one-class classifiers in order to be able to encode the variability of a gesture category, and thus, perform an alignment between a gesture sample and a gesture class. We model the set of gesture samples of a certain gesture category using either Gaussian mixture models or an approximation of convex hulls. Thus, we add a theoretical contribution to classical warping path in DTW by including local modeling of intraclass gesture variability. This methodology is applied in a clinical context, detecting a group of ADHD behavioral patterns defined by experts in psychology/psychiatry, to provide support to clinicians in the diagnose procedure. The proposed methodology is tested on a novel multimodal dataset (RGB plus depth) of ADHD children recordings with behavioral patterns. We obtain satisfying results when compared to standard state-of-the-art approaches in the DTW context.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1109/TCYB.2015.2396635-
dc.relation.ispartofIEEE Transactions on Cybernetics, 2016, vol. 46, num. 1, p. 136 -147-
dc.relation.urihttps://doi.org/10.1109/TCYB.2015.2396635-
dc.rights(c) Institute of Electrical and Electronics Engineers (IEEE), 2016-
dc.subject.classificationTrastorns per dèficit d'atenció amb hiperactivitat en els infants-
dc.subject.classificationTrastorns per dèficit d'atenció en els infants-
dc.subject.otherAttention deficit disorder with hyperactivity in children-
dc.subject.otherAttention-deficit-disordered children-
dc.titleA Gesture Recognition System for Detecting Behavioral Patterns of ADHD-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec645056-
dc.date.updated2018-01-24T11:58:12Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid26684256-
Appears in Collections:Articles publicats en revistes (Didàctica i Organització Educativa)
Articles publicats en revistes (Matemàtiques i Informàtica)
Articles publicats en revistes (Psicologia Social i Psicologia Quantitativa)

Files in This Item:
File Description SizeFormat 
645056.pdf2.07 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.