Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/119607
Title: Eatlog: us asistente digital personal para asistir a mejorar los hábitos saludables
Author: Soriano Oliú, Juan Luis
Director/Tutor: Radeva, Petia
Keywords: Hàbits alimentaris
Alimentació
Programari
Treballs de fi de grau
Aplicacions mòbils
Aprenentatge automàtic
Xarxes neuronals (Informàtica)
Reconeixement de formes (Informàtica)
Algorismes computacionals
Food habits
Diet
Computer software
Bachelor's thesis
Mobile apps
Machine learning
Neural networks (Computer science)
Pattern recognition systems
Computer algorithms
Issue Date: 22-Jun-2017
Abstract: [es] En la actualidad, los hábitos saludables relacionados con las dietas están cobrando cada vez más protagonismo. La sociedad está tomando conciencia de lo importante que es llevar una dieta equilibrada para muchos aspectos de su vida. El registro de las comidas es una de las grandes dificultades que sufren muchas de las personas que quieren llevar un seguimiento de su dieta. EatLog se desarrolla con el objetivo de generar automáticamente el diario de comidas a través de una aplicación para móviles gracias al reconocimiento automático de imágenes. Se implementan algoritmos de reconocimiento basados en la tecnologı́a Deep Learning, concretamente en las redes neuronales convolucionales. Esta tecnologı́a ha permitido desarrollar algoritmos que permiten varios reconocimientos de una imagen, entre los que destaca la comida y la categorı́a. La aplicación crea entonces de forma automática un registro de las comidas conectando con un servidor que contiene los algoritmos de reconocimiento. Se han descargado recetas e información nutricional de ingredientes. De este modo la aplicación genera la información nutricional de las comidas reconocidas. El usuario puede entonces consultar información y establecerse objetivos con respecto a cualquiera de los 26 indicadores nutricionales que se gestionan. Finalmente, para mejorar los resultados de reconocimiento, se ha procedido a descargar imágenes de comida en alta resolución. Esto ha permitido crear una base de datos de 200 categorı́as de comida que reconoce EatLog (101 correspondientes a la base de datos existente Food101 [9]). Las 99 restantes han sido descargadas en el proyecto, con una media de 800 imágenes por categorı́a.
Note: Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Petia Radeva
URI: http://hdl.handle.net/2445/119607
Appears in Collections:Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria8.31 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons