Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/120411
Title: Functional μ-opioid-galanin receptor heteromers in the ventral tegmental area
Author: Moreno Guillén, Estefanía
Quiroz, César
Rea, William
Cai, Ning-Sheng
Mallol Montero, Josefa
Cortés Tejedor, Antonio
Lluís i Biset, Carme
Canela Campos, Enric I.
Casadó, Vicent
Ferré, Sergi
Keywords: Receptors cel·lulars
Neurones
Cell receptors
Neurons
Issue Date: 1-Feb-2017
Publisher: The Society for Neuroscience
Abstract: The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR-Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders.
Note: Reproducció del document publicat a: https://doi.org/10.1523/JNEUROSCI.2442-16.2016
It is part of: Journal of Neuroscience, 2017, vol. 37, num. 5, p. 1176-1186
URI: http://hdl.handle.net/2445/120411
Related resource: https://doi.org/10.1523/JNEUROSCI.2442-16.2016
ISSN: 0270-6474
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)

Files in This Item:
File Description SizeFormat 
676805.pdf3.55 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons