Please use this identifier to cite or link to this item:
Title: Bioengineering single-protein wires
Author: Pozuelo Ruiz, Marta
Director: Díez Pérez, Ismael
Gorostiza Langa, Pablo Ignacio
Keywords: Bioenginyeria
Reacció d'oxidació-reducció
Oxidation-reduction reaction
Issue Date: 18-Jul-2017
Publisher: Universitat de Barcelona
Abstract: [eng] Electron Transfer (ET) is undoubtedly one of the most important processes in life. Molecularly well-defined ET pathways in complex protein ensembles play a vital role in biological processes such as cell respiration or photosynthesis. The fundamental understanding of ET processes in biology is important not only to understand such key natural processes but also to advance in the design of biomolecule/electrode interfaces for Bioelectronic applications. The development of new techniques such as scanning probe microscopies (SPM) played a key role. In particular, the electrochemical scanning tunnelling microscopy (EC-STM) has been exploited to in situ monitor the ET rate as a function of the applied potential of individual metalloproteins immobilized on an Au electrode thanks to the single-molecule spatial resolution and the electrochemical gate capabilities. Azurin from Pseudomonas aeruginosa is a widely studied redox protein model both in bulk and at the single molecule level. Its globular structure contains a coordinated copper ion, which makes the protein capable of exchanging electrons by switching its redox state (Cu I/II) and supports its role as a soluble electron carrier in the respiratory chain of bacteria. In this thesis, we will show our advances on the design and characterization of single-protein devices using a Cu-Azurin metalloprotein model. We have demonstrated transistor like-behaviour in an electrochemically-gated single-protein wire that operates at very low voltages thanks to the Cu-Azurin redox properties. It was demonstrated that the conductance varies depending on the redox state of the Cu centre, having its maximum value at the redox-midpoint. We have also analysed the spontaneous formation of single-Azurin electrical contacts through the monitored current when the two ECSTM electrodes were placed at a fixed distance. Discrete switching events for the conductance were observed, whose frequency depends on the applied electrochemical conditions and, therefore, they were univocally ascribed to discrete changes in the redox state of the trapped protein. In order to tailor the charge transport behaviour of the single-protein wire, we have synthesized several mutants of the protein by exploiting point-site bioengineering schemes at different positions of the protein second coordination sphere. Our results show that we can rationally change the transport mechanism of the single-protein device by studying the effect of the specific residue modification on the particular ET pathways in the protein backbone.
[spa] La transferencia de electrones (ET) es uno de los procesos más importantes de la vida. La comprensión fundamental de los procesos de ET en biología es importante no sólo para comprender tales procesos naturales claves, sino también para avanzar en el diseño de interfaces biomolécula / electrodo para aplicaciones bioelectrónicas. En particular, se ha explotado la microscopía de efecto túnel con control electroquímico (EC-STM) para monitorizar in situ la constante de ET en función del potencial aplicado de las metaloproteínas. La Azurina de Pseudomonas aeruginosa es un modelo de proteína redox ampliamente estudiado, tanto en ‘bulk’ como a nivel de una sola proteina. Su estructura globular contiene un ion de cobre coordinado, que hace que la proteína sea capaz de intercambiar electrones cambiando su estado redox (Cu I/II). Este ion es el responsable de su rol como portador de electrones en la cadena respiratoria de las bacterias. En esta tesis, mostraremos nuestros avances en el diseño y caracterización de dispositivos de una sola proteína utilizando un modelo de metaloproteína Cu-Azurin. Hemos demostrado un comportamiento similar a un transistor en un hilo electroquímico de una sola proteína que funciona a muy bajos voltajes gracias a las propiedades redox de Cu-Azurin. Se demostró que la conductancia varía dependiendo del estado redox del centro de Cu, teniendo su valor máximo en el punto medio redox. También hemos analizado la formación espontánea de los contactos eléctricos de Azurin única a través de la corriente monitorizada cuando los dos electrodos ECSTM se colocaron a una distancia fija. Se observaron eventos discretos de conmutación para la conductancia, cuya frecuencia depende de las condiciones electroquímicas aplicadas y, por lo tanto, se atribuyeron unívocamente cambios discretos en el estado redox de la proteína atrapada. Con el fin de adaptar el comportamiento de transporte de carga de la unión uniproteica, hemos sintetizado varios mutantes de la misma proteína mediante bioingeniería en diferentes posiciones de la proteína. Nuestros resultados muestran que podemos cambiar racionalmente el mecanismo de transporte del dispositivo de una sola proteína mediante el estudio del efecto de la modificación de residuos específicos en las vías ET particular en el esqueleto de la proteína.
Appears in Collections:Tesis Doctorals - Departament - Química Física

Files in This Item:
File Description SizeFormat 
MPR_PhD_THESIS.pdf6.72 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.