Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/121591
Title: Anàlisi de components principals i discriminant lineal: una aplicació a resultats acadèmics
Author: Balboa Gómez, David
Director/Tutor: Julià de Ferran, Olga
Igual Muñoz, Laura
Keywords: Anàlisi discriminant
Treballs de fi de grau
Anàlisi multivariable
Innovacions educatives
Educació superior
Python (Llenguatge de programació)
R (Llenguatge de programació)
Multivariate analysis
Bachelor's thesis
Discriminant analysis
Educational innovations
Higher education
Python (Computer program language)
R (Computer program language)
Issue Date: 29-Jun-2017
Abstract: [en] Aiming to give an introduction of Data analysis and support the innovation in teaching project of the University of Barcelona which has the purpose of creating an intelligent support system for both the head of studies and the tutors, this work studies the Principal Components Analysis and the Linear Discriminant Analysis; from a theoretical basis in order to understand its mechanics and from a practical implementation, applying them to academic results in order to extract information regarding the abandonment of university studies. The sample used are the degree in Mathematics, Computer Science and Law, for every one of which we considered the grades of the first course taking into account the students that abandoned separated and together with the students that finished. The project has mainly been implemented in Python. For visualization purposes we also used R.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Olga Julià de Ferran i Laura Igual Muñoz
URI: http://hdl.handle.net/2445/121591
Appears in Collections:Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria1.29 MBAdobe PDFView/Open
codi_font.zipCodi font577.31 kBzipView/Open


This item is licensed under a Creative Commons License Creative Commons