Please use this identifier to cite or link to this item:
Title: La capacitat analı́tica en problemes d’aproximació racional
Author: Banach Cañı́s, Josep
Director/Tutor: Mas Blesa, Albert
Keywords: Funcions contínues
Treballs de fi de grau
Funcions analítiques
Funcions de variables complexes
Continuous functions
Bachelor's thesis
Analytic functions
Functions of complex variables
Issue Date: 28-Jun-2017
Abstract: [en] This paper studies the relationship, depending on the compact set $K \subset \mathbb{C}$, between the family of continuous functions on $K, \mathcal{C}(K)$, the family of continuous functions on $K$ and analytics on $\overset{\circ}{K}, \mathcal{A}(K)$, the family of uniformly approximable functions on $K$ by rational functions with poles out on $K, \mathcal{R}(K)$, and the family of uniformly approximable functions on $K$ by polynomials, $\mathcal{P}(K)$. We will see that it is easy to characterise $K$ in order to achive $\mathcal{P}(K)=\mathcal{R}(K)$ or $\mathcal{A}(K)=\mathcal{C}(K)$, but it is more complicated to do the same in order to achieve $\mathcal{R}(K)=\mathcal{A}(K)$. In order to see all the possible relationships, we present some new concepts like the Hausdorff measure, content and dimension, the analytic capacity and the continuous analytic capacity. The main part of this essay is focused on the Vitushkin Theorem, which allows us to characterise the compacts $K$, such as $\mathcal{R}(K)=\mathcal{A}(K)$. we present a demostration scheme and the results obtained from it. In addition, we will also state the Inner Boundary Conjecture that provides us with the sufficient condition on $K$ to ensure that $\mathcal{R}(K)=\mathcal{A}(K)$.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Albert Mas Blesa
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria448.96 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons