Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/122044
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCrespo Vicente, Teresa-
dc.contributor.authorGebbia, Giancarlo-
dc.date.accessioned2018-05-03T08:09:32Z-
dc.date.available2018-05-03T08:09:32Z-
dc.date.issued2017-06-29-
dc.identifier.urihttp://hdl.handle.net/2445/122044-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Teresa Crespo Vicenteca
dc.description.abstract[en] The goal of this project is to classify the real forms of a closed subgroup of the special linear complex group of degree two. Previously we have to study several concepts of algebraic group theory such as galois cohomology. We expose many properties of forms of an algebraic group over a field $k$. We present the Kovacic algorithm for solving second order linear homogeneous differential equation over $\mathbb{C}(x)$.ca
dc.format.extent61 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Giancarlo Gebbia, 2017-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.subject.classificationVarietats algebraiques-
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationGrups algebraics linealsca
dc.subject.classificationÀlgebres de Lieca
dc.subject.classificationHomologiaca
dc.subject.classificationEquacions diferencials linealsca
dc.subject.classificationTeoria de Galoisca
dc.subject.otherAlgebraic varieties-
dc.subject.otherBachelor's thesis-
dc.subject.otherLinear algebraic groupsen
dc.subject.otherLie algebrasen
dc.subject.otherHomologyen
dc.subject.otherLinear differential equationsen
dc.subject.otherGalois theoryen
dc.titleReal forms of complex algebraic groupsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria959.31 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons