Please use this identifier to cite or link to this item:
Title: Rational chemical design of Triarylmethyl-based devices and 2D materials
Author: Alcón Rovira, Isaac
Director/Tutor: Bromley, Stefan Thomas
Illa, Francesc
Keywords: Química física orgànica
Química de superfícies
Química de l'estat sòlid
Química física
Estructura electrònica
Physical organic chemistry
Surface chemistry
Solid state chemistry
Physical and theoretical chemistry
Electronic structure
Issue Date: 14-Mar-2018
Publisher: Universitat de Barcelona
Abstract: [eng] In this PhD thesis I have studied through state-of-the-art quantum simulations (mainly within the density functional theory approach, DFT) triarylmethyl (TAM) based systems with potential for future nano-devices and designed a series of TAM-based 2D covalent organic frameworks (from now on TAM 2D-COFs). TAMs are organic radicals (i.e. open-shell molecules) which have been used for numerous applications during the last 20 years. In the first part of this PhD thesis I have studied a series of TAM-based systems in collaboration with the experimental groups led by Profs. Jaume Veciana and Concepció Rovira and Dr. Marta Mas-Torrent, respectively, both from the Institute of Materials Science of Barcelona (ICMAB). In such collaborative studies we have evaluated the potential of TAMs for different potential applications. In the first two works we assess the possibility of using closed-shell quinoidal TAMs which, upon being chemisorbed in metal substrates give rise to an open-shell (i.e. radical) monolayer. This is demonstrated by means of on-surface techniques such as X-ray photo-electron spectroscopy (XPS) and angle-resolved ultra-violet photo-electron spectroscopy (ARUPS) and our periodic density functional theory calculations. Complementing to this work I also present a second where a similar radical SAM is formed using, in this case, a TAM-based bi-radical compound. In a third collaborative study we study the E – Z isomerisation in a hydrogenated closed-shell TAM (the so-called H-PTM) bonded with an ethylene unit. An irreversible E to Z transformation is experimentally measured with no evident explanation. Based in DFT and ab initio molecular dynamics simulations (AIMD), I was able to provide a sensible hypothesis for such results based in a sterical blocking effect in the Z conformer. The last two chapters of this PhD thesis collect the computational works focused in making theoretical predictions of yet un-synthesized systems. In Chapter 4, I present a work were we studied how to control the unpaired electron in TAMs, finding out that in these molecules there exists a linear correlation between the aryl ring twist angles and the localization of their unpaired electron. Based on this study we then looked for TAM-based systems where the aryl rings’ twist angles could be externally manipulated. In such direction, I present TAM 2D-COFs (see above) as the only possible platform where aryl ring twist angles may be externally manipulated. As reported in the second publication of Chapter 4, uniaxially stretching the structure of our designed TAM 2D-COFs allows for a fine and reversible (i.e. elastic) twisting of all aryl rings within the 2D material. This allows controlling the localization of all unpaired electron in the network, as well as the band of the material and magnetic interactions. In the last work of this chapter we assess the possibility of having chemical persistence of TAM monomers and structural flexibility through a screening procedure based in force-field calculations. In the last chapter of this PhD thesis I present two studies where it is demonstrated that TAMs, upon being covalently bonded in para- one respect each other, present electrical conductive characteristics. In the first work, in collaboration with the experimental groups from ICMAB, this is demonstrated for a PTM dimer where one of the PTM units is reduced to the anion. The resulting negative charge is found to conduct between both PTM units at room temperature. Finally, in the last predictive work of this thesis, I present a work where we demonstrate based in hybrid DFT calculations that para-connected TAM 2D-COFs behave as semimetals with energetically close-lying semiconductor solutions.
[spa] En esta tesis doctoral presentada por artículos he estudiado mediante cálculos DFT (density functional theory, del inglés) sistemas basados en moléculas triaril-metil (TAM) para potenciales aplicaciones futuras. Las moléculas TAM son compuestos orgánicos radicales (es decir, con un electrón desapareado) que se han utilizado para construir diversos materiales durante los últimos 20 años. En la primera parte de la tesis presento los estudios llevados a cabo en colaboración con grupos experimentales del Instituto de Ciencia de los Materiales de Barcelona (ICMAB) expertos en la síntesis de tales compuestos. En los primeros estudios de esta parte se ha llevado a cabo la formación de una mono-capa auto-ensamblada de TAMs en diferentes superficies metálicas. Mediante técnicas de superficie i cálculos DFT periódicos hemos demostrado que utilizando moléculas TAM de capa cerrada (es decir, diamagnéticas) se puede generar una mono-capa radical, o de capa abierta (es decir, paramagnética). En un tercer estudio en colaboración con los mismos grupos experimentales estudiamos la isomerización E – Z (o cis- trans-) irreversible en un sistema TAM-etileno (de capa cerrada). Los cálculos computacionales han sido claves en este estudio para entender el bloqueo cinético que se da en el isómero Z (cis-), lo cual impide su isomerización al isómero E (trans-), a pesar de ser éste último más estable termodinámicamente. En la segunda parte de esta tesis doctoral presento una serie de estudios en los cuales hemos diseñado materiales 2D basados en moléculas TAM, aún no preparados en el laboratorio. En estos estudios se demuestra el gran potencial de dichas redes basadas en moléculas TAM y su gran versatilidad electrónica a la nano-escala. Nuestros resultados demuestran que dichos materiales 2D se puede comportar tanto como aislantes eléctricos, como semiconductores o como semimetales (tales como el grafeno) según su diseño molecular. Además, en dicho materiales es posible controlar sus propiedades electrónicas mediante la manipulación del ángulo de giro de los anillos aril en cada unidad TAM.
Appears in Collections:Tesis Doctorals - Departament - Ciència dels Materials i Química Física

Files in This Item:
File Description SizeFormat 
IAR_PhD_THESIS.pdf43.79 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons