Please use this identifier to cite or link to this item:
Title: Punts fixos de difeomorfismes hamiltonians
Author: Plandolit López, Bernat
Director/Tutor: Mundet i Riera, Ignasi
Keywords: Difeomorfismes
Treballs de fi de grau
Tor (Geometria)
Varietats simplèctiques
Topologia diferencial
Bachelor's thesis
Torus (Geometry)
Symplectic manifolds
Differential topology
Issue Date: 29-Jun-2017
Abstract: [en] Arnold’s conjecture asserts that every Hamiltonian diffeomorfism of a compact symplectic manifold has at least as many fixed points as a function on the manifold must have critical points. What’s more, if the fixed points are all non degenerate, then the number of fixed points is at least the minimal number of critical points for a Morse function on the manifold. In this project we will give meaning to all the concepts mentioned in the conjecture’s statement and we will study a very specific known result: the case in which the manifolds are 2-dimensional tori and the diffeomorfisms are close enough to identity. We will also generalize some results to 2n-dimensional tori to study the general case for every Hamiltonian diffeomorfism.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Ignasi Mundet i Riera
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria767.8 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons