Please use this identifier to cite or link to this item:
Title: Interpolación Spline y aplicación a las curvas de nivel
Author: Chica Jiménez, José Antonio
Director/Tutor: Bosch Gual, Miquel
Keywords: Corbes
Treballs de fi de grau
Interpolació (Matemàtica)
Geometria computacional
Bachelor's thesis
Computational geometry
Issue Date: 19-Jan-2018
Abstract: [en] In the real world you don’t see the straight lines, both the shapes and the trajectories obey curved lines and curved surfaces that do not follow a generic rule. From always we has tried to study and to be able to control all type of surfaces, either to adjust movements to configurations as in physics or to parameterize surfaces. One of the best ways we have today so that it controlled in a way that matches the data is the interpolation. For the adjustment of curves, splines are used to approximate complicated shapes. The simplicity of representation and the ease of calculation of Splines make them popular for the representation of computer curves, particularly in the field of computer graphics. This text is an introduction to the study of Spline interpolation curves, as well as the main methods, their varieties and their practical uses.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Miquel Bosch Gual
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria2.52 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons