Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/123340
Title: Window for preferred axion models
Author: Di Luzio, Luca
Mescia, Federico
Nardi, Enrico
Keywords: Partícules (Matèria)
Particles
Issue Date: 3-Oct-2017
Publisher: American Physical Society
Abstract: We discuss phenomenological criteria for defining "axion windows," namely regions in the parameter space of the axion-photon coupling where realistic models live. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it would be highly desirable to specify them in terms of precise phenomenological requirements. We first focus on hadronic axion models within post-inflationary scenarios, in which the initial abundance of the new vectorlike quarks Q is thermal. We classify their representations R Q by requiring that (i) the Q are sufficiently short lived to avoid issues with long-lived strongly interacting relics, (ii) the theory remains weakly coupled up to the Planck scale. The more general case of multiple R Q is also studied, and the absolute upper and lower bounds on the axion-photon coupling as a function of the axion mass is identified. Pre-inflationary scenarios in which the axion decay constant remains bounded as f a ≤ 5 × 10 11     GeV allow for axion-photon couplings only about 20% larger. Realistic Dine-Fischler-Srednicki-Zhitnitsky type of axion models also remain encompassed within the hadronic axion window. Some mechanisms that can allow to enhance the axion-photon coupling to values sizeably above the preferred window are discussed.
Note: Reproducció del document publicat a: https://doi.org/10.1103/PhysRevD.96.075003
It is part of: Physical Review D, 2017, vol. 96, num. 7, p. 075003-1-075003-17
Related resource: https://doi.org/10.1103/PhysRevD.96.075003
URI: http://hdl.handle.net/2445/123340
ISSN: 2470-0010
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)
Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))

Files in This Item:
File Description SizeFormat 
675689.pdf706.81 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.