Please use this identifier to cite or link to this item:
Title: Biohybrid microtube swimmers driven by single captured bacteria
Author: Stanton, Morgan M.
Park, Byung-Wook
Miguel López, Albert
Ma, Xing
Sitti, Metin
Sánchez Ordóñez, Samuel
Keywords: Escheríchia coli
Escherichia coli
Issue Date: 1-May-2017
Publisher: Wiley
Abstract: Bacteria biohybrids employ the motility and power of swimming bacteria to carry and maneuver microscale particles. They have the potential to perform microdrug and cargo delivery in vivo, but have been limited by poor design, reduced swimming capabilities, and impeded functionality. To address these challenge, motile Escherichia coli are captured inside electropolymerized microtubes, exhibiting the first report of a bacteria microswimmer that does not utilize a spherical particle chassis. Single bacterium becomes partially trapped within the tube and becomes a bioengine to push the microtube though biological media. Microtubes are modified with "smart" material properties for motion control, including a bacteria-attractant polydopamine inner layer, addition of magnetic components for external guidance, and a biochemical kill trigger to cease bacterium swimming on demand. Swimming dynamics of the bacteria biohybrid are quantified by comparing "length of protrusion" of bacteria from the microtubes with respect to changes in angular autocorrelation and swimmer mean squared displacement. The multifunctional microtubular swimmers present a new generation of biocompatible micromotors toward future microbiorobots and minimally invasive medical applications.
Note: Versió postprint del document publicat a:
It is part of: Small, 2017, vol. 13, num. 19, p. 1603679
Related resource:
Appears in Collections:Publicacions de projectes de recerca finançats per la UE
Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
L21_2017_Small_13_1603679_OA.pdf1.62 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.